

Spectrum Futures 2017

5G from a Developed Market Perspective: What We Plan to Do

Monday, 18 September 2017

5G Global Trend

Rumi IIZUKA Spectrum Utilization Research Division, Foundation for MultiMedia Communications (FMMC)

5G in major countries

5G frequency bands Global harmonization for 5G

Candidate bands identified at WRC-15					
WRC-15	EU(CEPT)	USA(FCC)			
24.25-27.5 GHz	24.5-27.5 GHz 🔘	Δ			
-	1	27.5-28.35 GHz			
<u>31.8-33.4 GHz</u>	31.8-33.4 GHz O	Δ			
37-40.5 GHz		37-38.6 GHz			
	-	38.6-40 GHz			
<u>40.5-42.5 GHz</u>	40-5.43.5 GHz O	Δ			
42.5-43.5 GHz		-			
45.5-47 GHz	45.5-48.9 GHz				
<u>47-47.2 GHz</u>		_			
47.2-50.2 GHz		Δ			
50.4-52.6 GHz	-	Δ			
66-76 GHz	66-71 GHz	64-71 GHz			
	71-76 GHz	Δ			
81-86 GHz	81-86 GHz	Δ			
_	_	△(95 GHz以上)			

■Sharing studies in EU

	5G bands	Bandwid th	Existing services	
	24.5-27.5	3 GHz	Data Relay	
	GHz		Satellite("Copernicus"),	
			Satellite uplink, Fixed link	
	31.8-33.4	1.6 GHz	High Density application in the	
	GHz		Fixed Service(HDFS) band	
			ruled by Radio navigation(RR	
			5.547)	
	40-5.43.5	3 GHz	Satellite, Radio astronomy	
	GHz			
	45.5-48.9	3.4 GHz	Satellite	
	GH₄			
	66-71 GHz	5 GHz	Satellite	
All righ	1771e7600992 ^{©FN}	™5°GH22017	Fixed, Satellite	

Category	Bands	Block sizes	Proposed rules			
Licensed	28GHz	425MH	County-sized geographic			
use	(27.5-	Z	area Licenses (more than			
(3.85GHz	28.35GHz)		3,000 areas)			
bandwidt	37GHz	200MH	To allow for continuity of			
h)	(37-38.6GHz)	Z	commercial operations			
			To protect a limited number			
			of Federal military sites			
			across the full 37 GHz band			
			To maintain the existing			
			Federal fixed and mobile			
			allocations			
	Low band	200MH	To create a space			
	(37-37.6GHz)	Z	for coordinated co-primary			
			shared access between			
			Federal and non-Federal			
			users			
	High band	200MH	PEA(Partial Economic Areas)			
	(37.6-	Z	licenses(416 areas)			
	38.6GHz)					
	39GHz	200MH	PEA license			
	(38.6-40GHz)	Z	To maintain the co-primary			
			Federal FSS and MSS			
			allocations in the			
			39.5-40 GHz band, limited to			
			military systems			
Unlicense	64-71GHz	-	To operate in the 64-71 GHz			
duse			band under Part 15* based			
Note First p	riority is © and se	cond one	isoptheueles Freedres bathors that			
Fleenplwopts	es to allocate as ac	lditional b	and spice of the manual states and the second states and the secon			
additional allocation bands for mobile settices apprinary base.						
§ 15.255 Operation within the band 57-64 GHz						

New service rules for 5G adopted by ECC

Sources: Various materials

USA Upper Microwave Flexible Use Service

■ FCC: "Spectrum Frontiers Proposal" (Jun 23, 2016)

"Spectrum Frontiers R&O and FNPRM" (July 14, 2016)

The Obama administration: Investment of a \$400 million Advanced Wireless Research Initiative led by the National Science Foundation (NSF), and deployment of four city-scale testing platforms for Advanced Wireless Research(PAWR) using 5G bands over the next decade (July 15, 2016)

Additional 5G fixed and mobile bands for UMFUS (Upper Microwave Flexible Use Service)

- > 24GHz band: 24.25-24.45/24.75-25.25 GHz
- > 32 GHz band: 31.8-33GHz
- ▶ 42 GHz band: 42-42.5 GHz
- 47 GHz band: 47.2-50.2 GHz
- ▶ 50 GHz band: 50.4-52.6 GHz
- > 70/80 GHz band: 71-76 GHz/81-86 GHz
- Above 95GHz
- Sharing policies
 - Sharing framework both among non-Federal operators and with the Federal government in the 37-37.6GHz band
 - Sharing framework that federal government users can gain coordinated access to spectrum in the 37.6-38.6 GHz band (in addition to the protected sites) in the future

USA Mid-Band Spectrum Between 3.7 and 24 GHz

Specific bands for consideration

- 3.7-4.2GHz
 - More intensive fixed use or mobile broadband use in the 3.7-4.2GHz
- 5.925-6.425GHz
 - ▶ Expansion of unlicensed use within the 5.925-6.425 GHz band
- 6.425-7.125GHz
 - > Potential for more intensive fixed or flexible use of the 6.425-7.125 GHz band

Google studying 3.7-4.2 GHz band

- The 3.7-4.2 GHz band is substantially underused by the satellite industry.
- According to the FCC database, 29% of ground-based fixed satellite service (FSS) sites didn' t exist.
- One of the first steps to examining the use of 3.7 to 4.2 GHz would be a clean up of the database, in order to get an accurate picture of the satellite sites that exist and that really require protection.
- As for protecting the satellite dishes, it would be possible to adopt Spectrum Access System (SAS) and Environmental Sensing Capabilities (ESC) which already deal with the military incumbents in the CBRS(Citizens Broadband Radio Service band) band, 3.5GHz.

5

All rights reserved ©FMMC 2017

Source: NOTICE OF INQUIRY, Expanding Flexible Use in Mid-Band Spectrum Between 3.7 and 24 GHz https://www.fcc.gov/document/fcc-opens-inquiry-new-opportunities-mid-band-spectrum

USA Field test license applications by stakeholders

- Raytheon Missile Systems
 - Bands: 71-76GHz, 81-86GHz and 92-94GHz (January 2016)
 - Use case: Next generation broadband communications for both of DOD and commercial customers (e.g. between aircrafts, ground to air etc.)
 - Google
 - Bands: 71-76GHz, 81-86GHz (Nationwide coverage) (March 3, 2017-April 1, 2018)
 - Use case: Communications between aircrafts, ground to air etc.

Boeing

- ▶ Bands: 47.2-50.2 GHz(↑)、50.4-52.4 GHz(↑) (June 22, 2016)
- Use case: Satellite broadband internet service, NGSO (non-geostationary satellite orbit constellations) low-earth orbit satellite system to compete with SpaceX and OneWeb
- Total number of satellites: 2956 stations
- Facebook
 - Bands: 73GHz (Transmission distance: 13km, transmission speed: 20GHz) (November 2016)
- SpaceX
 - Bands: 10.7-12.7 GHz, 13.85-14.5 GHz, 17.8-18.6 GHz, 18.8-19.3 GHz, 27.5-29.1 GHz, 29.5-30.0 GHz (November 2016)
 - > Total number of satellites: 4425 stations (Latency: 25-35 millisecond, Attitude: 1100-1325km) (May 2017)
- OneWeb with Airbus
 - Bands: 10.7-12.7 GHz, 14-14.5 GHz, 17.8-18.6 GHz, 18.8-19.3 GHz, 27.5-29.1 GHz, 29.5-30 GHz (NGSO FSS license applications) (June 2017)
 - Total number of satellites: 2000 stations until 2027
- Apple with Boeing
 - Bands: 28GHz, 39GHz (experimental term: 12 month) (May 2017)
 - Apple invests the satellite broadband project of Boeing.
 - Apple headhunts an executive belonging satellite department from Google. (April 2017)

6

USA 5G strategies of mobile operators

 Verizon and AT&T are planning to introduce 5G fixed wireless service using 28GHz and 39GHz in consumer broadband market in order to compete with major CATV operators.

O	perator	Band	Summary
Ve	erizon	28GHz 39GHz	 Establishment of 5G Technology Forum (5GTF) in second half of 2015 Launch of 5G fixed wireless pilot service in 11 markets in 2017 (Ann Arbor, Michigan; Atlanta; Bernardsville, New Jersey; Brockton, Massachusetts; Dallas; Denver; Houston; Miami; Sacramento; Seattle; and Washington, D.C.) Supplier: Ericsson Samsung, Technical partner:: Intel and Qualcomm Demonstration of vehicle-mounted 5G system and VR at Indianapolis 500 (May 2017) Acquisition of 28GHz and 39GHz licenses from XO communications and StraightPath
AT	Γ&T	28GHz 39GHz	 Field test license applications of 3.7-4.2 GHz, 27.5-2.835 GHz, 3.7-3.86 GHz, 64-71 GHz, 71-76 GHz (License term: 2 years) (March 2017) Launch of video streaming test of "DirecTV Now" based on fixed 5G (May 2017) Planning to start fixed BB service using 28 GHz band for premise and SME customers in 2017 Partnership with Qualcomm and Ericsson to test 5G for both mobile and fixed in 2017 Planning to conduct a test based on 5G New Radio specification of 3GPP
Τ-	Mobile	600MHz 28GHz 38GHz	 Deployment of 5G nationwide network until 2019 using 600 MHz band Field trial license applications of 28GHz and 38GHz (March 2017)
Sp gl	orint	2.5GHz	 Agreement of 5G technical development using band 41 (2.5GHz) based on 3GPP New Radio with Softbank and Qualcomm (May 2017) Collaboration with New York University Wireless for mobile 5G

EU 5G Manifesto (July 2016

5G deployment

All r

 European operators will target launching 5G in at least one city in each of the 28 European Member

5G use-cases (Vertical industries)

- 5G network virtualisation (slicing) to accommodate specific needs or business models with enhanced levels of service assurance and guarantees
- Connected automotive scenarios, including ultra-broadband infotainment, safety applications and automated / autonomous driving across motorways in Europe
- Connected eHealth scenarios that can spark Healthcare innovation and business transformation across the continuum of care, keeping Healthcare affordable to citizens and government (and tax payers).
- Reliable, high capacity broadband connectivity in connected planes, railway and high-speed transportation across Europe, and transport and logistic networks with multimodal cargo (truck, rail, shortsea, barge, plane/drone)
- Public Safety use-cases providing security, reliability and real-time broadband connectivity for key events involving large audience
- Smart grids: ensuring networks stability and coordinating energy distribution from diverse sources (e.g. wind, solar, power-plant) and different regions
- Smart City use-cases including connected bus shelters, real-time traffic monitoring and analytics, crowd management, smart homes, ageing population, augmented reality for tourism and advertising
- Media and entertainment use-cases, including the integration of satellite and terrestrial network services, demonstrating the power of multicast and caching for delivering a cost-effective and scalable user experience anywhere in Europe, as well as immersive video scenarios showcasing the benefits of 5G capacity enhancements

Sources: 5G Manifesto for timely deployment of 5G in Europe, Brussels, July 7th 2016 https://ec.europa.eu/digital-single-market/en/news/commissioner-oettinger-welcomes-5g-manifesto

Vhat 5G is about

Security &

EU 5G Action Plan (September 2016)

Items	Actions
Frequency	Identifying by the end of 2016 a provisional list of pioneer spectrum bands for the initial launch of 5G services
	Agreement by end of 2017 on the full set of spectrum bands (below and above 6 GHz) to be harmonised for the initial deployment of commercia 5G networks in Europe, based on a planned RSPG opinion on 5G spectrum
Coverage	Encouraging Member States to develop, by end 2017, national 5G deployment roadmaps as part of the national broadband plans
	 Ensuring that every Member State will identify at least one major city to be "5G-enabled" by the end of 2020 and that all urban areas and major terrestrial transport paths have uninterrupted 5G coverage by 2025. 5 cities (Berlin, Amsterdam, Stockholm, Tallinn in Estonia, Matera in Italy) (as of December 2016)
Early	Ensuring that hardware, terminals* and devices based on 5G connectivity
adopter	 are available in due time before 2020 to encourage uptake and demand Migrating public safety and security services from existing proprietary communications platforms to commercial 5G platforms which will be even more secure, resilient and reliable
Financing	Setting up a specific 5G venture financing facility, to support innovative European start-ups aiming to develop 5G technologies and related new
*	Not onless and connected devices (cars, drones, urban furnitu
9 s reserved ©FMMC	e Sources: 5G for Europe: An Action Plan (Brussels, 14.9.2016, COM(2016) 588 20ttps://ec.europa.eu/digital-single-market/en/news/communication-5g-europe-action-plan-and-accompanyin staff-working-documents

EU 5G strategic roadmap (November 2016)

Opinion on spectrum related aspects for 5G (Radio Spectrum Policy Group)

- 3400-3800 MHz band to be the primary band suitable for the introduction of 5G -based services in Europe even before 2020
- Using of 700 MHz band in order to enable nationwide and indoor 5G coverage
- Ensuring that technical and regulatory conditions for all bands already harmonised for mobile networks are fit for 5G use
- Realising harmonization of 24.25-27.5 GHz (26 GHz band) as a pioneer band for 5G above 24 GHz before 2020
- Considering 31.8-33.4 GHz(33 GHz band) and 40-5.43.5 GHz(42 GHz band) as next priority 5G bands
- Taking also into account the work of the RSPG working groups on IoT and ITS as well as existing licences in the pioneer bands.

UK Government policies for 5G deployment

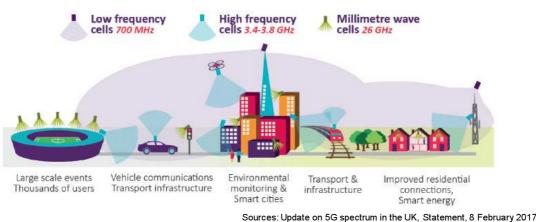
HM Treasury: "Autumn Statement 2016" (23 November 2016)

- The government will invest over £1 billion by 2020-21, including £740 million through the NPIF(National Productivity Investment Fund), targeted at supporting fibre and 5G.
- National Infrastructure Commission(NIC): "Connected Future" (December 2016)
 - Deployment of 5G infrastructure across major centres and transport networks
 - Major roads: Our motorways must have roadside networks fit for the future. The infrastructure should be in place by 2025.
 - Key rail routes: The railway network must rapidly improve connectivity. This will be best delivered in future by a trackside network. Government should provide a plan by 2017, and the infrastructure should be in place on main rail routes by 2025.
 - Towns and cities: Local Authorities and LEPs should work with network providers to develop approaches that enable the deployment of the tens of thousands of small wireless cells we expect to need in our urban centres.

Department for Digital, Culture, Media & Sport(DCMS)

- "UK strategy and plan for 5G & Digitisation driving economic growth and productivity" (January 2017)
- "Next Generation Mobile Technologies: A 5G Strategy for the UK" (March 2017)
 - The Government will ask Ofcom to review and report back to DCMS by the end of 2017, the scope for the spectrum licensing regime to facilitate better 4G and 5G deployment at national, regional and local scales, including in-building usage.

All rights reserved ©Fi**pvio** naote this in Europe and agree a timescale and clear milestones for further work.


UK 5G spectrum in UK (February 2017)

700 MHz

Conducting auction in 2018/19 and ensuring that the band is available nationally for mobile data by Q2 2020

3.4 - 3.8 GHz

- 3410-3480 MHz and 3500-3580 MHz: 150 MHz of spectrum in this range (3410-3480 MHz and 3500-3580 MHz) has been cleared and released by the public sector and is due to be auctioned later this year, 2017.
- 3605 3689 MHz: Conducting public consultation on sharing study between existing users (satellite earth stations, fixed links and UK Broadband' s licence for the 3605 to 3689 MHz band) and mobile services in 2017
- 26 GHz (24.25-27.5GHz)
 - Announcement of Call for Input on spectrum assignment plan of 26 GHz band (July 2017-)

► 12 All rights reserved ©FMMC 2017 https://www.ofcom.org.uk/_data/assets/pdf_file/0021/97023/5G-update-08022017.pdf, Call for inputs on 5G spectrum access at 26 GHZ and update on bands above 30 GHz https://www.ofcom.org.uk/consultations-and-statements/category-2/5g-access-at-26.ghz

(Reference) 5G field trial using 28GHz by Arqiva

- The trial is set to take place in the second half of 2017 in central London and will involve the deployment of an end-to-end 5G FWA network, operating in the 28GHz band. Argiva owns the national license in the UK for this spectrum, which is also the standard band being used for 5G trials in the USA, Japan and South Korea.
- Samsung' s 5G Access Units (the base stations) will use high-frequency mmWave (millimeter wave) spectrum and advanced technologies such as beam-forming, to provide high-density coverage and ultra-highbandwidth connectivity to CPEs (or Customer Premise Equipment) installed in nearby locations.
- These can be self-installed, therefore limiting costs, and can bring a subscriber online in a matter of minutes. This gives 5G FWA considerable advantages over comparable FTTH or FTTB (Fibre-to-the-Home/Building) deployments in terms of service rollout times and the costs to both the service provider and the subscriber.
- The CPEs will be based at locations in London including Arqiva' s offices at Percy Street, London W1 and will provide ultra-high speed connectivity to multiple devices. The locations will be selected because of the wide range of customer groupings in business and residential premises.

Source: https://www.arqiva.com/news/press-releases/arqiva-and-samsung-to-undertake-first-5g-fixed-wireless-access-trial-in-the-uk/

All rights reserved ©FMMC 2017

13

Major countries Considerations of 5G spectrum allocations

Country	M/Y	Summary
Finland	5/2017	Announcement by Minister of Transport and Communications Assignment of 3,400–3,800MHz in 2018 and launch of use in 2019
Sweden	3/2017	<u>Spectrum allocation plan for 5G test (Announcement by PTS)</u> Allocation of 100-200MHz bandwidth within 3.4-3.6GHzband and 1000MHz bandwidth within 26 GHz band; Assignment for commercial use in 2020
France	3/2017	<u>5G: ISSUES & CHALLENGES (Accouchement by ARCEP)</u> 26 GHz band: Planning to conduct sharing study between fixed link for 4G by mobile operators, fixed satellite, earth station of space and to transfer existing services to other millimeter band 3.4 - 3.8 GHz: 3400 – 3600MHz is primary band for ARCEP (Non primary for Interior Ministry and Defense Department). 3600 - 3800 MHz is exclusive band for ARCEP and is necessary to conduct sharing study between wireless local loop and satellite.
France	1/2017	Proposal of spectrum allocation for 5G etc. (ARCEP public consultation) 40MHz bandwidth within 2.6GHz band for PMR; 40MHz bandwidth within 3.5GHz band for fixed wireless broadband in rural area; remained band within 3.5GHz band for 5G
South Korea	1/2017	<u>The first economic ministers</u> <u>'meeting 2017: "K-ICT spectrum plan</u> New allocations of 1000MHz bandwidth within 28GHz band and 1300MHz bandwidth within 3.5GHz band until 2018
China	12/2016	Announcement by Ministry of Industry and Information Technology(MIIT) Allocation of 3.3GHz-3.4GHz, 4.4GHz-4.5GHz and 4.8GHz-4.99GHz for 5G; launch of spectrum use above 6GHz after 2019
China	1/2016	<u>The 13th five-year plan(2016-2020)</u> New allocation of more than 500MHz bandwidth for 5G; Permission of assignment of 200MHz bandwidth within 3.5GHz band for 5G test
Germany	12/2016	Proposal of spectrum allocation for 5G (Announcement by BNetzA) Allocation of 700 MHz(center gap), 2 GHz, 3.4 – 3.8 GHz, 26 GHz, 28 GHz(27,8285 – 28,4445GHz, 28,9485 – 29,4525 GHz) for 5G
Australia	10/2016	<u>Spectrum relocation for 5G (Announcement by ACMA</u> New allocation of 1.5GHz band and 3.6GHz band for 5G (Existing users of 3.6GHz: satellite and fixed broadband, Existing users of 1.5GHz: defense, fixed service in rural area etc.)
F 1		Sources: Various materials

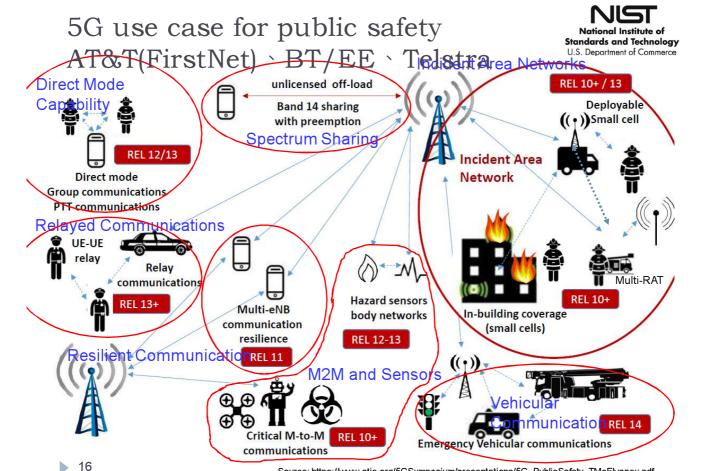
Germany "5G-ConnectedMobility" 5G trial in transportation system (2016/11)

Founding members

Ericsson, BMW Group, Deutsche Bahn, Deutsche Telekom, Telefónica Deutschland, Vodafone, the TU Dresden 5G Lab Germany, the Federal Highway Research Institute (BASt) and the Federal Regulatory Agency (BNetzA)

Governmental supporters

Federal Ministry of Transport & Digital Infrastructure and Bavarian Road Construction Administration


Trial network

Dedicated 5G test network in the 700-MHz band along the A9 motorway and the high speed rail track between Nuremberg and Greding

15 All rights reserved ©FMMC 2017

germany_244039853_c

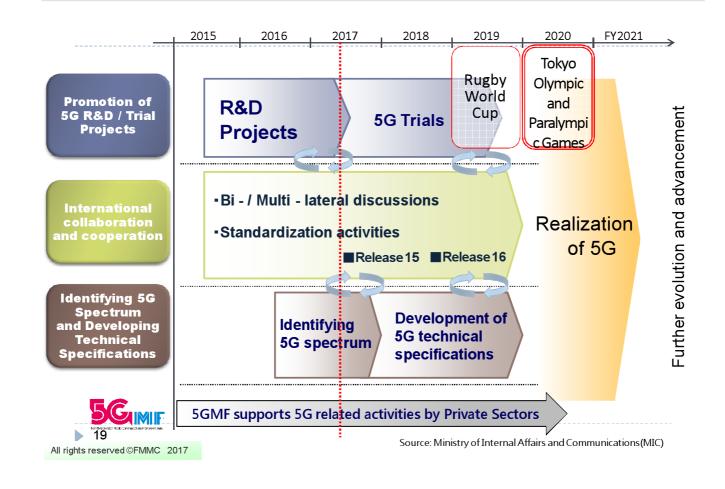
All rights reserved ©FMMC 2017

Source: https://www.atis.org/5GSymposium/presentations/5G_PublicSafety_TMcElvaney.pdf

Input from 5G activities in major countries

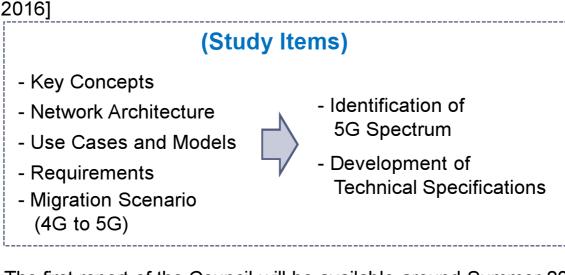
- > Demand stimulation of millimeter band by 5G spectrum considerations
 - Three-sided battle in technical and service development (i.e. competition between Communications, IT and Space-defense companies)
 - > Necessary of study on spectrum needs of existing licensees including fixed and satellite
 - Expansion of spectrum sharing between existing users(especially governmental users) and new 5G user
- Consideration of spectrum sharing framework
 - > Spectrum and operational coordination procedure between users
 - Development of dynamic spectrum access technology to protect existing licensees
 - Use-or-share approach for spectrum efficient use
- 5G use case and areas (commercial and private uses)
 - Area of high population density, big event sites etc. (possibility of unlicensed use as an alternative)
 - Alternatives to optical fixed broadband as a last one mile to compete with CATV (especially USA)
 - Backhaul network between base stations (especially in rural areas)
 - > Linkage between important points in transportation including road, rail, canal, aviation etc.
 - Operational areas for public safety entities and critical infrastructure owners

Adoption of priority access service

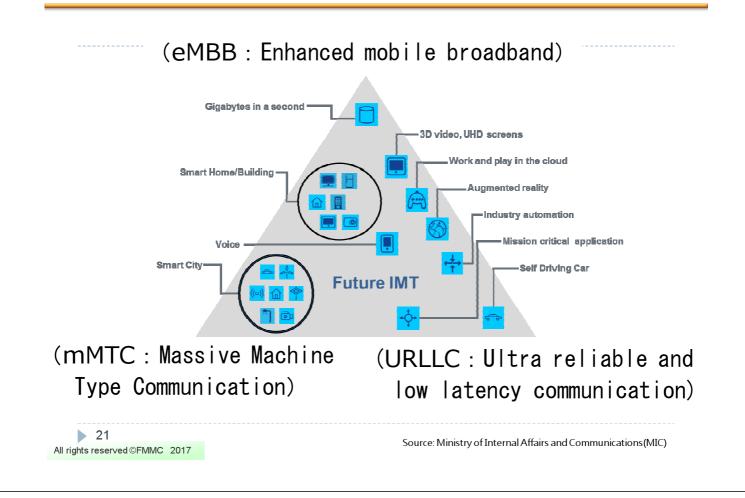

- Promotion of shared use of single network with priority access control technology by different users or applications depending on emergency and ordinary situations or service level agreements
- Effective use of licensed and unlicensed bands (for mobile)
 - Separate use depending on the situations: Whereas licensed bands are used for mission critical
 applications, unlicensed bands are for consumers mobile data.

17

All rights reserved ©FMMC 2017


5G in Japan

5G Development Roadmap toward 2020 in Japan

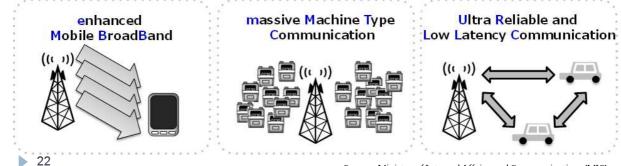


Inquiry on 5G Technical Specifications

 Information and Communications Council started its study [October 12,

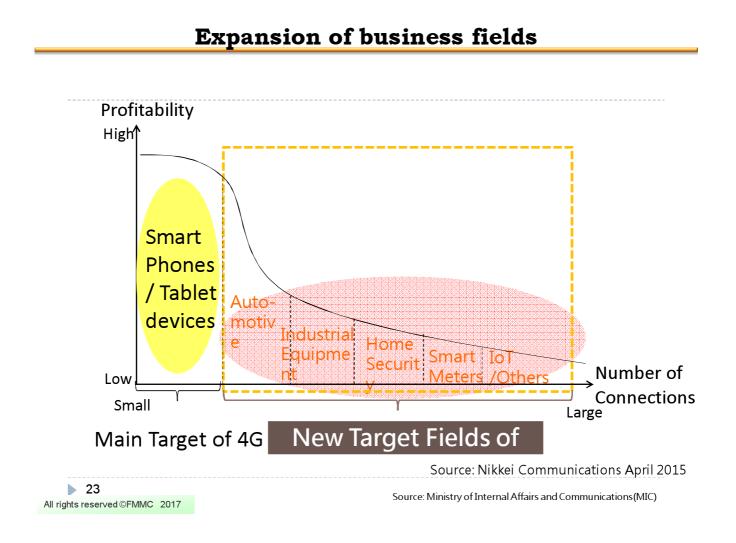
 The first report of the Council will be available <u>around Summer 2017</u>. The study will go forward.

5G with Ultra Flexibility

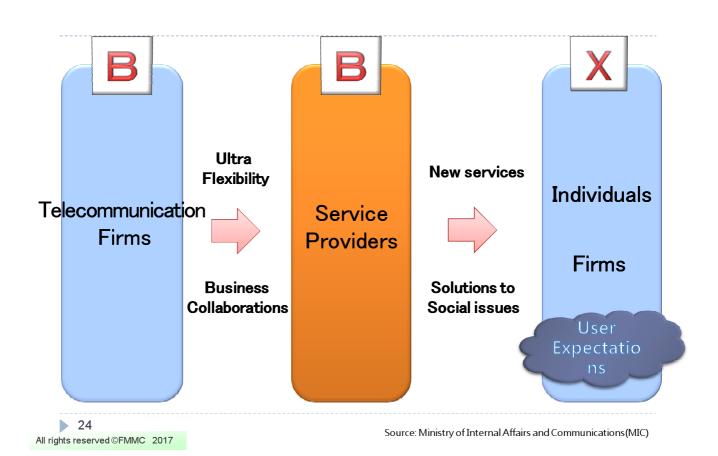

∼4G:Best effort

 \bigcirc Broadband

• Difficulty to cover every use case


∼5G: Ultra flexibility

OProviding required quality



All rights reserved ©FMMC 2017

Source: Ministry of Internal Affairs and Communications (MIC)

5G B2B2X Model

[Period]

FY 2017 - FY 2019 (3 years)

[Places]

Tokyo + Local areas

[Test Environments]

- Urban micro-cell or Urban macro-cell
- Suburban macro-cell or Rural macro-cell
- Indoor hotspot

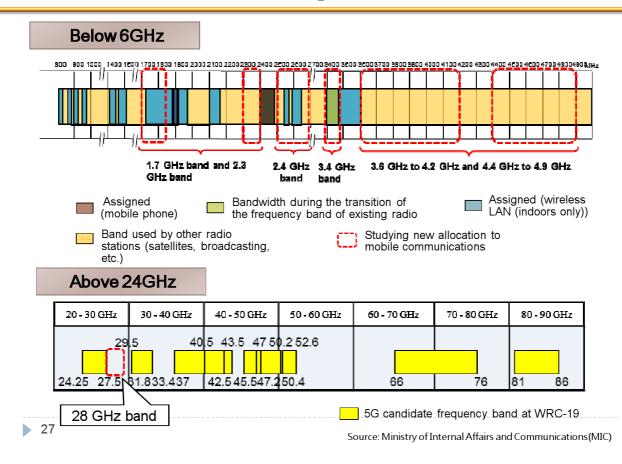
[Key Capabilities]

- eMBB (10Gbps peak data rate)
- mMTC (1 million connected devices/km²)
- URLLC (1ms over-the-air latency)

All rights reserved ©FMMC 2017

Source: Ministry of Internal Affairs and Communications (MIC)

5G Field Trials in Japan (2)

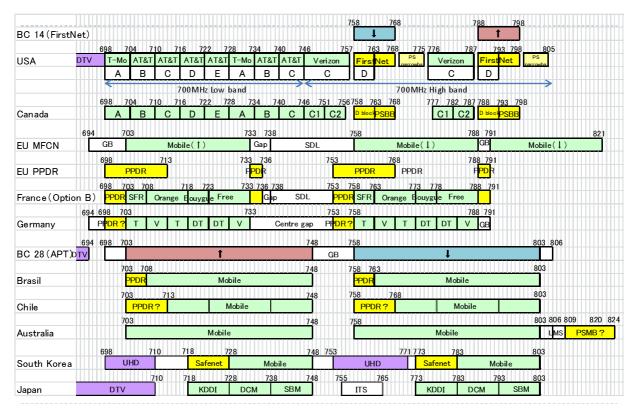

	Responsible Organizatio n	Main Partners	Trial Overview	Main Trial Locations	Technolog y
I	NTT DOCOMO	• TOBU TOWER SKYTREE • ALSOK • Wakayama Pref.	 Sightseeing Smart Cities Medical Services 	•Tokyo • Wakayama	eMBB
п	NTT Communication s	•Tobu Railways •Infocity	• Transport	•Tochigi •Shizuoka	eMBB
ш	KDDI	•Obayashi Corp. •NEC	• Construction	• Saitama	URLLC
IV	ATR	• Naha City • Keikyu Railways	• Entertainment	•Okinawa • Tokyo/HN D	eMBB
V	Softbank	 Advanced Smart Mobility Co., Ltd. SB Drive Corp. 	• Transport * Based on curre	• Yamaguchi nt plans, which are	URLLC subject to change
All right	s reserved ©FMMC 2017	(TOD)	 Loaistics 	•Hokkaido	nications(MIC)

[Radio Spectrum]

below 6 GHz, 28 GHz

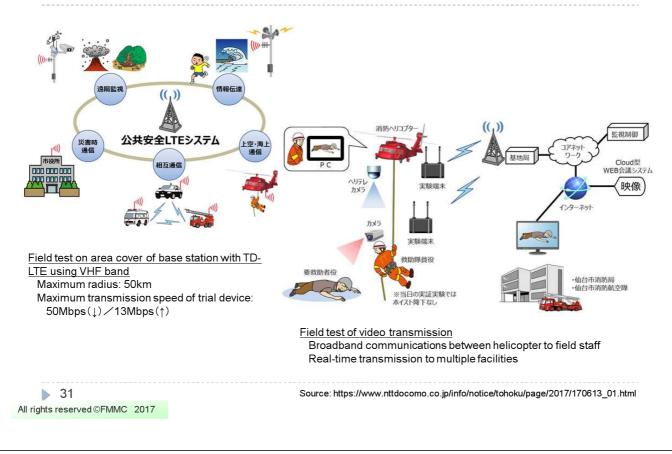
Tokyo + Local areas

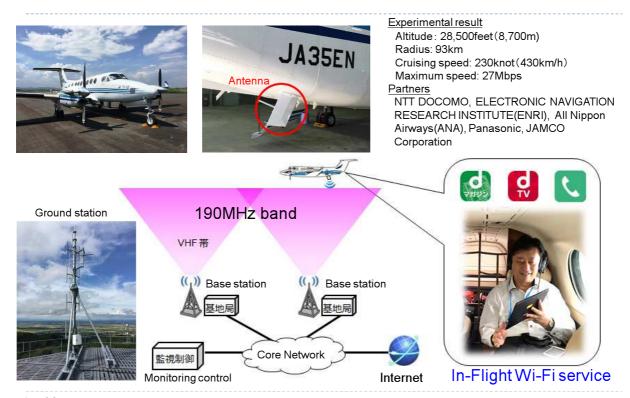

[Places]



Candidate Frequencies for 5G

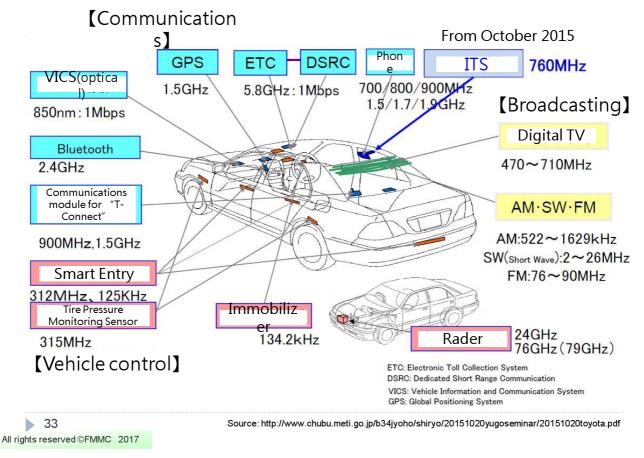
Spectrum refarming after digital switchover


700MHz band plans after digital switchover


Sources: Various materials

Public Safety TD-LTE using 190MHz band

Field trial by NTT Docomo (June 2017)


Ground-to-air TD-LTE using 190MHz band

All rights reserved ©FMMC 2017

Source: https://www.nttdocomo.co.jp/info/news_release/2017/08/08_01.html

Wireless technologies for Vehicle

ITS using 760MHz band Applications of ITS Connect by Toyota

Driving Assistance Service via Use of V2I Communication

All rights reserved ©FMMC 2017

Source: http://toyota.jp/technology/safety/itsconnect/, https://www.itsconnect-pc.org/en/

THANK YOU FOR YOUR KIND ATTENTION

ご清聴ありがとうございました

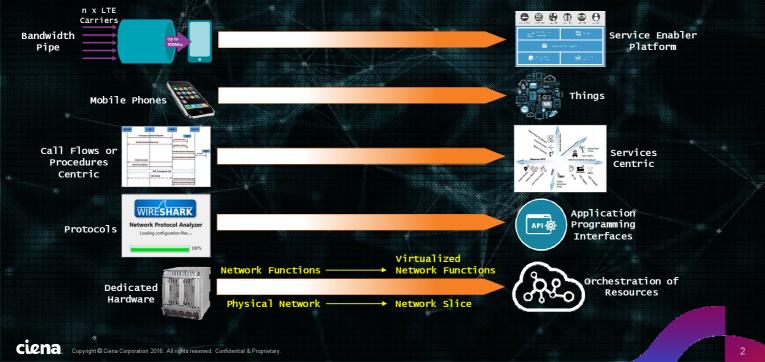
<u>Rumi IIZUKA</u> Principal Researcher Spectrum Utilization Research Division Foundation for MultiMedia Communications (FMMC) e-mail: iizuka@fmmc.or.jp

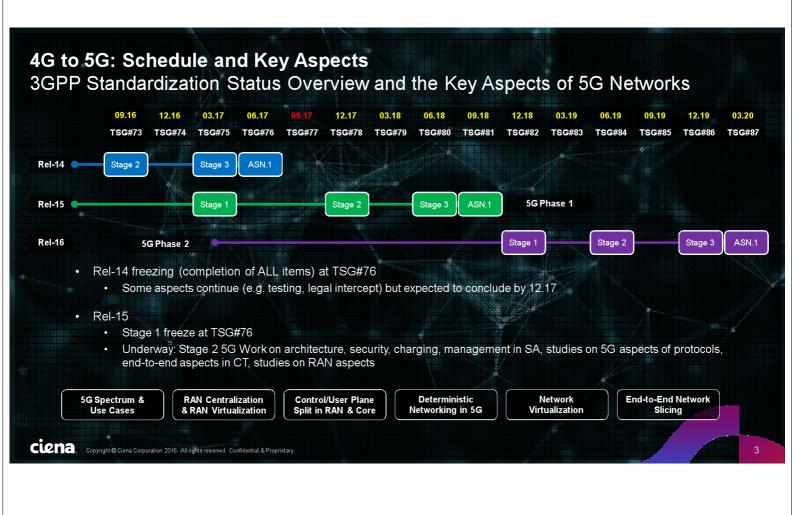
http://www.fmmc.or.jp/

> 35

4G to 5G: How Will It Happen?

Spectrum Futures 2017

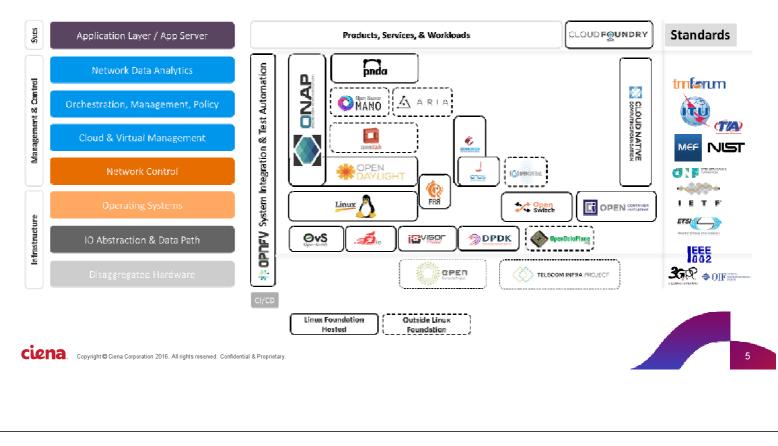

Remus Tan Senior Advisor, Mobility Networks and Architectures (CTO Office - Asia Pacific) e1: retan@ciena.com e2: remus.tan@ties.itu.int m1: +65 9639.7989 | m2: +886 970.265.322


18th September 2017

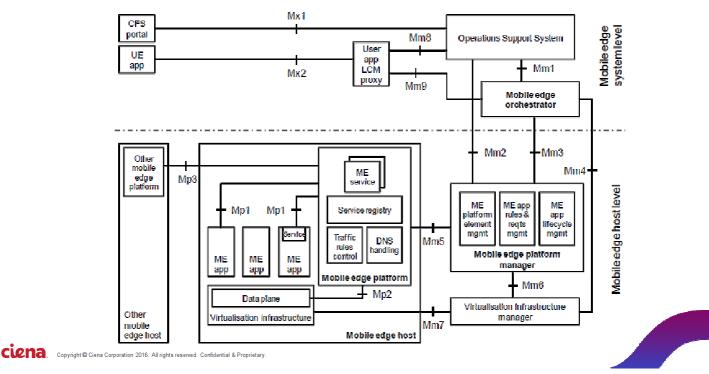
Version 1.5

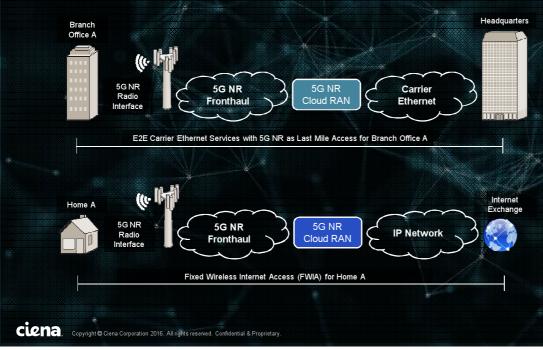
Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary

4G to 5G: Significant Network Evolution is Expected in 5G Networks Transformation Towards a Software & Service Centric Architecture



4G to 5G: Standards vs Open Sources (Part One)


Key Standards Development Organizations and Forums Chartering the Path for 5G and Future Networks


4G to 5G: Standards vs Open Sources (Part Two) Linux Foundation Unified Open Networking & Orchestration Architecture

4G to 5G: Realization of ETSI Multi-Access Edge Compute (MEC) Architecture Real Time Payloads Processing • Network Data Analytics & Continuous Control

4G to 5G: Fixed 5G Services (Pre-5G) with mmWave Spectrum Fixed Wireless Internet Access (FWIA) & Wireless Carrier Ethernet Services (W-CES) Made Possible with 5G NR (Standardization-in-Progress)

For Both Scenarios:

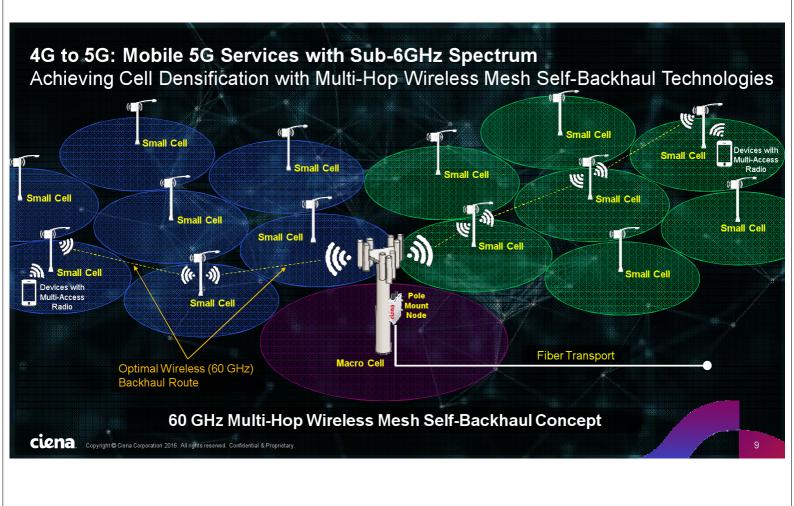
- 5G NR Cloud RAN <u>does not</u> <u>connect back</u> to a 5G Next-Gen Core User Plane Function (UPF). They connect directly into a Fixed Line Services Network
- Such Fixed Line Equivalent Services are made possible due to a <u>high amount of</u> <u>available spectrum</u> in the Above 6GHz spectrum
- Leverages 5G NR PDU capabilities (e.g. <u>Ethernet</u>, IPv4/IPv6 and Non-IP)
- Service Data Flow QoS is
 now fully accessible in the RAN due to the <u>new SDAP</u>
 <u>sublayer</u> introduced in 5G NR RAN Stack

4G to 5G: Mobile 5G Services with Sub-6GHz Spectrum

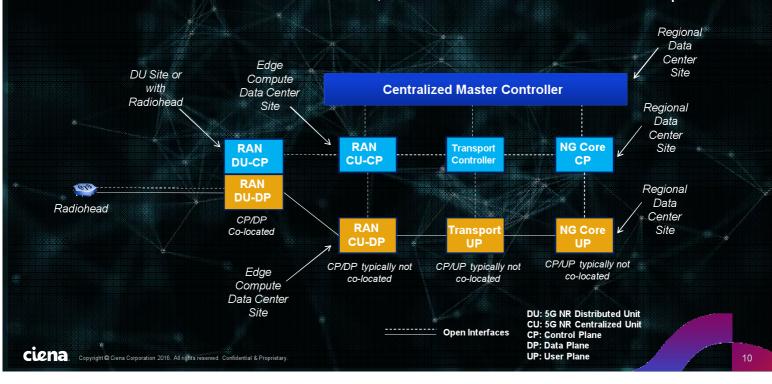
Significant Focus on Low Latency and High Reliability Communications Network to Deliver Mission Critical 5G Services

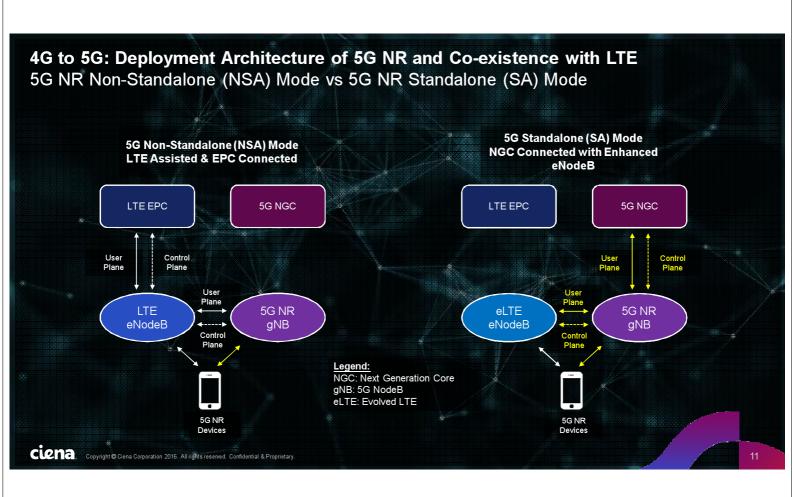
Smart Cities (Massive Machine-Type Communications) Both IP-based & Non-IP based

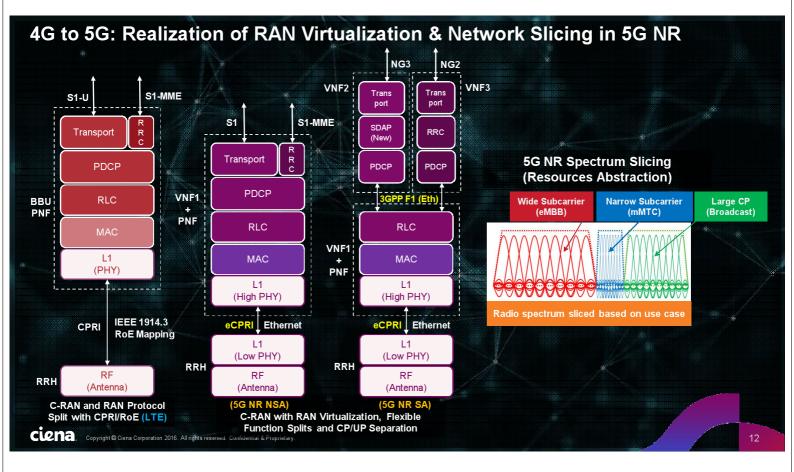
Mobile Broadband (Enhanced MBB)



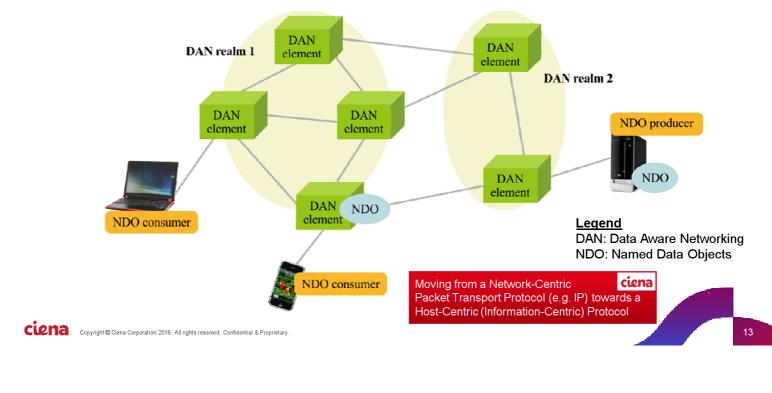
Drone Operations (Ultra-Reliable Low Latency Communications)




Cellular V2X (Ultra-Reliable Low Latency Communications)


ciena. ...

4G to 5G: Control/User Plane Split in RAN & Core Future State Architecture for 5G NR RAN, 5G Next Gen Core and 5G Transport



4G to 5G: What Next Generation Networks Really Means

Next Generation Protocol Recommendations for Future Networks: ITU-T SG-13 Y.3071 Data Aware Networking (Information Centric Networking)

Ciena, Copyright © Ciena Corporation 2016. All rights reserved. Confidential & Proprietary.

Future X Network

Sanjay Kamat Managing Partner, Bell Labs Consulting

Nokia Bell Labs innovations have been changing the way we live for more than 90 years

NOKIA Bell Labs

Nokia Bell Labs today

Creating disruptive innovations for the next phase of human existence

Future X \rightarrow New network architecture for the 5G era (and beyond)

WHY NEW ARCHITECTURE?

A.^{Aug}One Huge Expectation on Creating New Value
 Enable the Next Technological Revolution

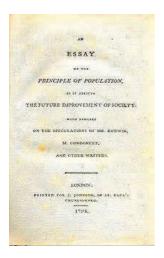
B. Three Fundamental Limits

- Physics, Mathematics, Economics
- C.^{Ads} Seven Dominant Forces Shaping the Architecture

© Nokia 2017

NOKIA Bell Labs

NOKIA Bell Labs

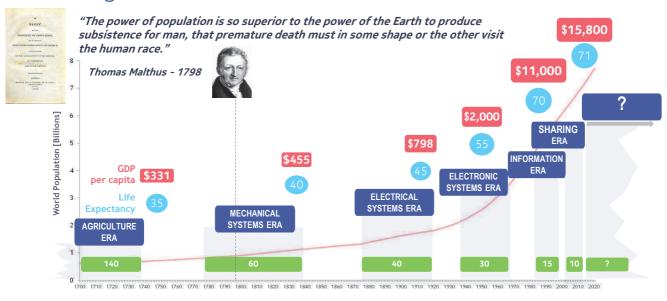

Humanity's Needs Human Needs

Technological Revolution

Interconnection and interdependence of new systems and technologies + The capacity to profoundly transform the economy and eventually society

New Value Creation - How?

Remember Malthus and his dismal prophecy?



"The power of population is so superior to the power of the Earth to produce subsistence for man, that premature death that must in some shape or the other visit the human race."

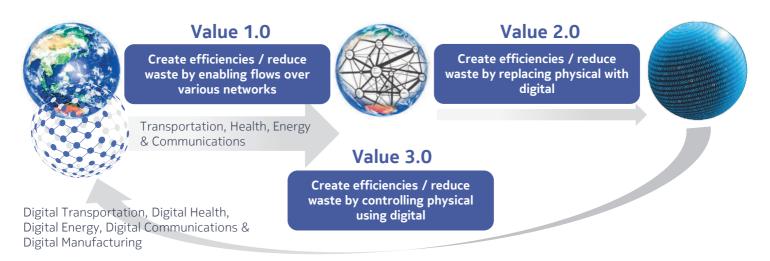
Thomas Malthus - 1798

How did we prove him wrong?

Technological Revolutions - Creation of new value

Our industry has helped create the "sharing era" – what is next?

7 © Nokia 2017


NOKIA Bell Labs

Creating New Value - for "Augmented Intelligence Era"

30X Resource Consumption Growth over 300 Years	7.3: Number of Earths Required to Sustain Today's Population at US Consumption Level with No Resource Depletion	
2B : Sustainable Population at European Consumption Level (with No Resource Depletion	45kg per capita per day)	
1B : Sustainable Population at US Consumption Level (90kg) with No Resource Depletion	per capita per day)	

Can our industry help crack the problem of enabling sustainable growth?

Our Thesis - Digitization as enabler of "Networked Augmented Intelligence"

Automation, Optimization & Control of everything that matters

9 © Nokia 2017

NOKIA Bell Labs

New Value – Remove waste

How? – Sense, Analyze, Control X where X = ...

New Value Creation – How?

Humanity's Needs	Human Needs
	Transcendence Needs Self-Actualization Needs Aesthetic Needs
	Growth Needs Cognitive Needs We are here here
	Belonging and Love Needs
	Safety Needs
	Physiological Needs Free WiFi

New Value Creation – How?

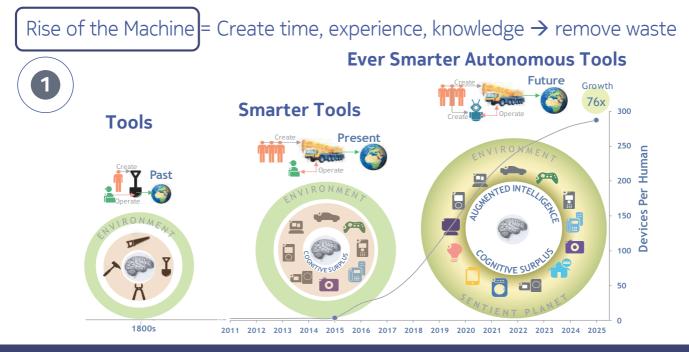
New Value – Create / Save time

- How? – Automate X
 - where $X = \dots$
- While building and keeping

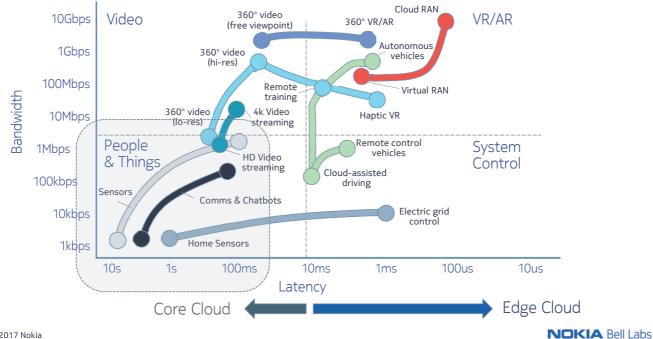
New Value – Create new eXperiences

How? - Connect Digital and Physical X where X = ...

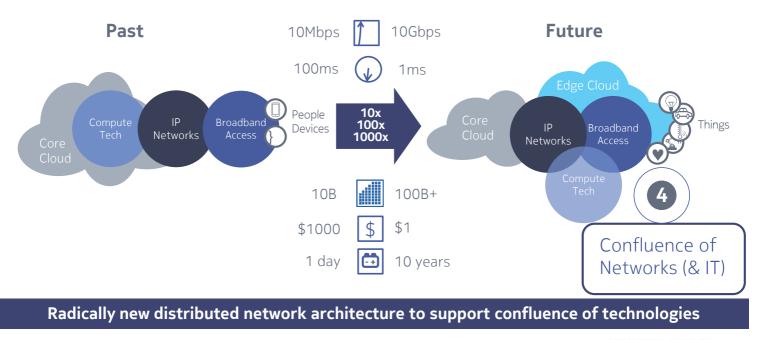
13 © Nokia 2017


New Value – Create new knowledge

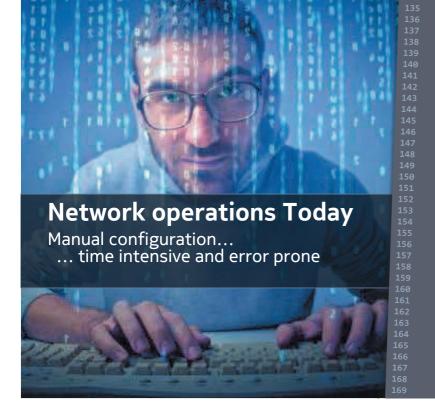
How? - *Augmented* Intelligence to better understand X where X = ...


From Mechanical Advantage to Cognitive Advantage – with new network

Economic Value		Settings	Size in 2025 \$ billion, adjusted to 2015 dollars Total = \$3.9 trillion-11.1 trillion	Low estimate High estimate
	?	Human (170– 1,590	Monitoring and managing illness, improving wellness
\$3.8T-\$11T economic impact in		Home Home	200- 350	Energy management, safety and security, chore automation, usage-based design of appliances
2025		Retail environments	410- 1,160	Automated checkout, layout optimization, smart CRM, in-store personalized promotions, inventory shrinkage prevention
<i>Source: McKinsey Global Institute, The Internet of Things: Mapping the Value</i>		Offices	70- 150	Organizational redesign and worker monitoring, augmented reality for training, energy monitoring, building security
<i>Beyond the Hype, June 2015</i>	1	Factories	1,210-3,700	Operations optimization, predictive maintenance, inventory optimization, health and safety
Emergence of		Worksites	160- 930	Operations optimization, equipment maintenance, health and safety, IoT- enabled R&D
the Enterprise		Vehicles	210- 740	Condition-based maintenance, reduced insurance
(2)	2	Cities	930- 1,660	Public safety and health, traffic control, resource management
18 © Nokia 2017		Outside	560- 850	Logistics routing, autonomous cars and trucks, navigation

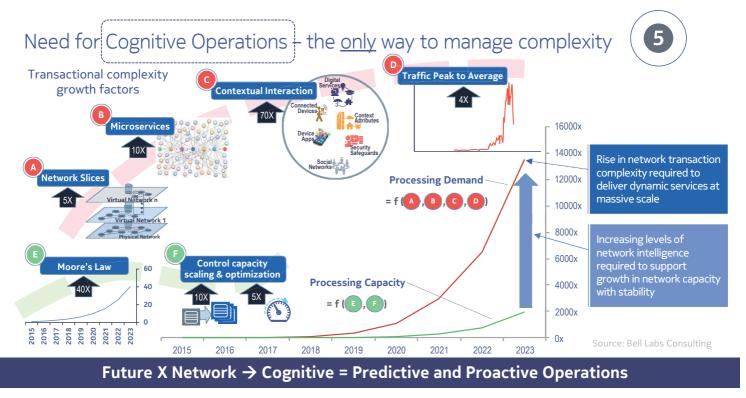


Latency & bandwidth matter ... for new digital experiences + saving time

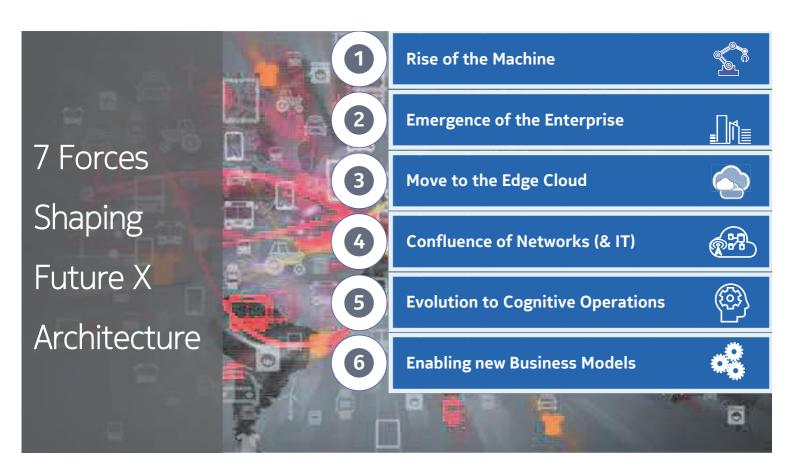


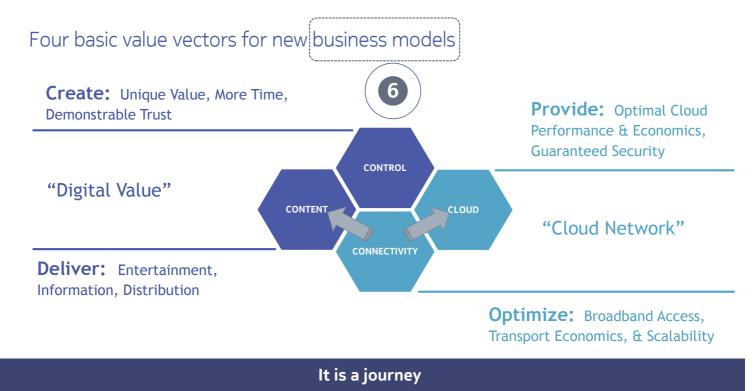
Architecture – old silos vs. new convergence (& joint optimization)

NOKIA Bell Labs



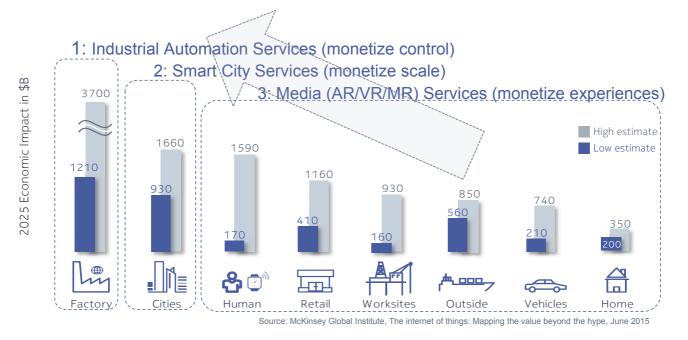
ports: - containerPort: 3306 volumeMounts: - name: mysql-persistent-storage mountPath: /var/lib/mysql volumes: - name: mysql-persistent-storage gcePersistentDisk: pdName: my-database-disk fsType: ext4 Eversion: extensions/v1beta1 hd: HorizontalPodAutoscaler cadata: amme: frontend-scaler c: caleRef: kind: Deployment name: frontend-deployment apiVersion: v1 subresource: scale inReplicas: 10 puUtilization: targetPercentage: 80 Version: v1 : Service data: me: db ;


25 © 2017 Nokia


NOKIA Bell Labs

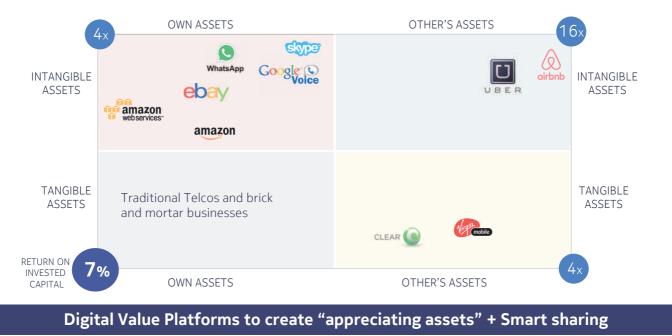
26 © 2017 Nokia

NOKIA Bell Labs

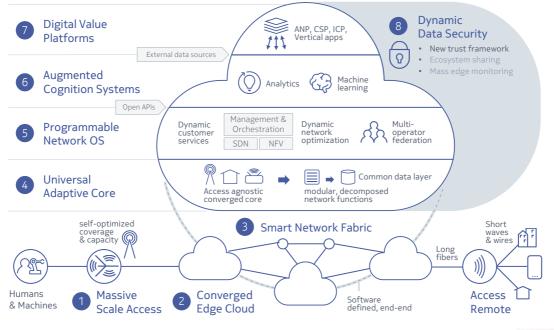


28 © 2017 Nokia

NOKIA Bell Labs


What to monetize - the big picture

29 © 2017 Nokia


NOKIA Bell Labs

Fundamental role of assets

Future X – A New Architecture for New Value in the 5G era

NOKIA Bell Labs

Networked Augmented Intelligence - the next technological revolution

Pervasive digital-physical systems drive life and business automation

Automation of everything transforms economy and society and creates time

global-local alliance

imperceptible

latency

security

apac

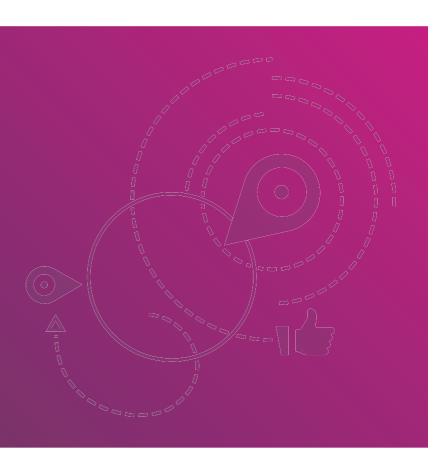
nite

100x

augmented <u>a</u> cognition <u>B</u> SLA <u>s</u> a

33 © 2017 Nokia

NOKIA Bell Labs



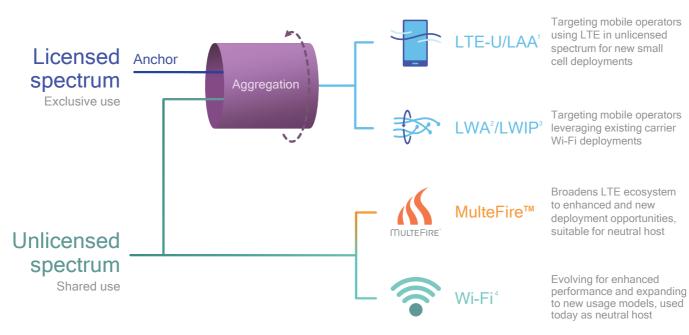
34 © Nokia 2017

Spectrum for 4G and 5G

Qualcomm Technologies, Inc. July, 2017

Using all available spectrum types and spectrum bands

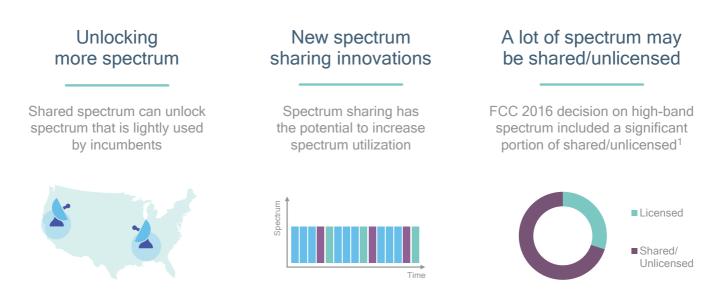
Licensed spectrum


Exclusive use Over 40 bands globally for LTE

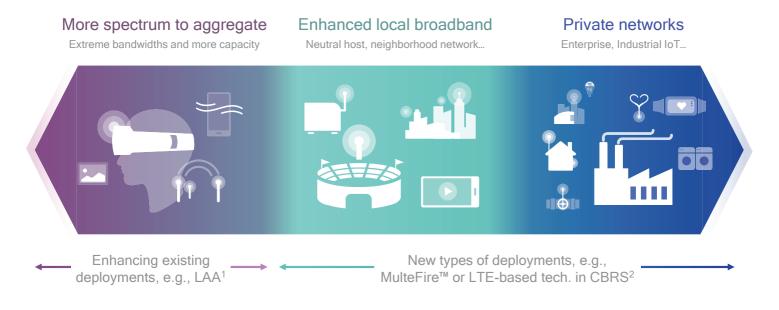
Shared spectrum

New shared spectrum paradigms Example: 2.3 GHz Europe / 3.5 GHz USA

Unlicensed spectrum


Shared use Example: 2.4 GHz / 5 GHz / 60 GHz global

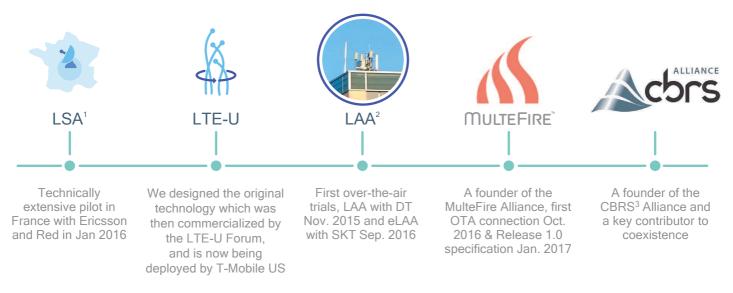
Making best use of shared/unlicensed spectrum


1. Licensed-Assisted Access (LAA), also includes enhanced LAA (eLAA); 2. LTE WLAN Link Aggregation (LWA); 3. LTE WLAN radio level integration with IPsec tunnel (LWIP); 4. 802.11ac / .11ad / .11ax / .11ay

New opportunities with shared/unlicensed spectrum

1 FCC ruling FCC 16-89 on 7/14/2016 allocated 3.25 GHz of licensed spectrum and 7.6 GHz of shared/unlicensed spectrum.

Spectrum sharing valuable for wide range of deployments


1) Licensed-Assisted Access (LAA); 2) Citizen Broadband Radio Service (CBRS)-a 3-tier shared spectrum where multiple LTE-based technologies are supported: LTE-TDD, MulteFire and LAA

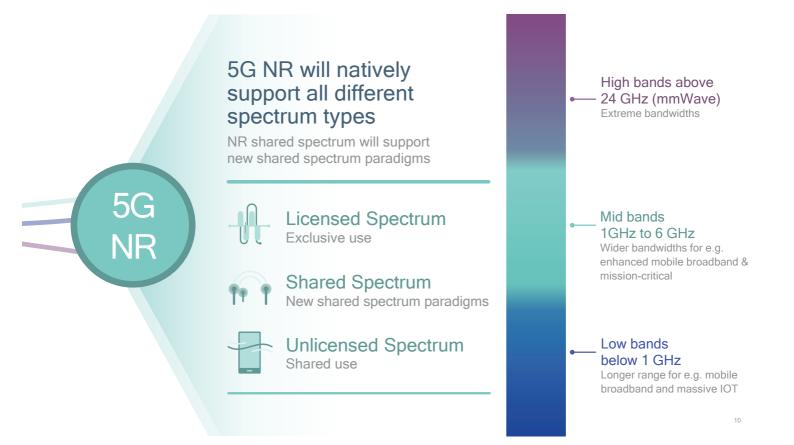
Qualcomm Technologies leading the way with Wi-Fi in the mobile industry

Qualcomm Wi-Fi chipsets are products of Qualcomm Technologies, Inc.

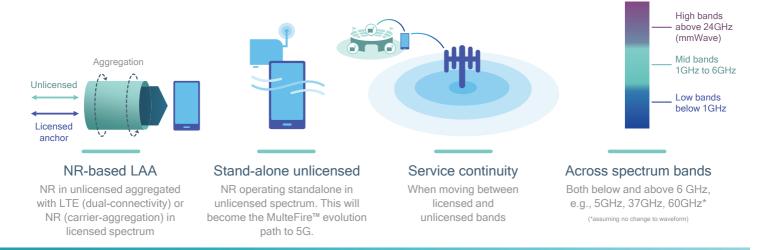
Pioneering shared spectrum technologies in LTE

1) Licensed Shared Access (LSA); 2) Licensed-Assisted Access (LAA), enhanced LAA (eLAA), Deutsche Telekom (DT), SK Telecom (SKT); 3) Citizen Broadband Radio Service (CBRS)

LTE-U and LAA are ready for commercial deployment Specifications ready, FCC authorized, LBT globally, and available in products



vs-events/blog/2016/09/23/industry-makes-progress-unlicensed-Ite-coexis


Ushering in new spectrum sharing paradigms with 5G Pioneering spectrum sharing technologies with LTE today

Learn more at: http://www.qualcomm.com/spectrum-sharing

3GPP study on 5G NR operation in unlicensed spectrum First time 3GPP studies cellular technology operating stand-alone in unlicensed¹

Designing with fair co-existence in any unlicensed spectrum: NR/NR, NR/LTE, NR/Wi-Fi

Study item in Rel. 15 (RP-170828), which could be followed by a work item that is completed in Rel. 16.

Global 4G & 5G spectrum update

Opening more spectrum for 5G is a global effort

5G spectrum status in key Asian markets and Australia

Japan

Singapore

Hong Kong

Indonesia

Australia

- Currently focusing on sub-6 GHz; approved trials at 3.4-3.6 GHz & 4.8-5 GHz, probably approve frequency planning in 3.3-3.4 GHz (indoor only)
- mmWave in longer term. Chinese gov't solicited public opinion for candidate bands of 24.75-27.5 GHz & 37-42.5 GHz non-exclusively in Jun'17
- Chinese government approved small scale trial frequencies usage in 24.75-27.5 GHz & 37-42.5 GHz mmWave ranges in Jul'17
 Phase 1 (2018+): 27.5-28.5 GHz & 3.4-3.7 GHz. also 26.5-29.5 GHz if 3GPP assigns it to 5G, auction expected in 2018
- Phase 1 (2018+): 27.5-26.5 GHz & 5.4-5.7 GHz, also 20.5-29.5 GHz in 5GPP assigns in 0.5G, all
 Phase 2 (2018-2021): 2 GHz BW in 26.5-27.5 GHz, 28.5-29.5 GHz, or WRC-19 bands
- Phase 3 (2021-2026): Looking at another 1 GHz allocation
- Trials have started at 4.4-4.9 GHz & also looking at 3.6-4.2 GHz; mmWave: 27.5-29.5 GHz
- Official 5G bands: 3.7 GHz, 4.5 GHz (max 500 MHz in sub-6 GHz), and 28 GHz (max 2 GHz)
- Actual band(s) allocation and technical rules are expected in 2018
- Regulator issued a public consultation on 5G spectrum, including bands below 1 GHz, between 1 and 6 GHz, and above 6 GHz.
- Regulator announced plan to allocate low-band, mid-band (3.4-3.7 GHz) and mmWave (24.25-28.35 GHz) spectrum
- With recent 5G demonstration, the Indonesia minister hopes to allocate 2 GHz at 28 GHz
- Government would like to have a 5G demo/showcase for its hosting of the Asian Games in August 2018
- Planning for 3.4 to 3.7 GHz and also investigating mmWave bands
- Telstra has already announced trials in 2018 at the Commonwealth Games, using 28 and 39 GHz
- Many other governments in the region initiating 5G stakeholder consultations this year

Asia Pacific Telecommunity also driving 4G & 5G spectrum Working on regional spectrum allocation, harmonization, and innovation

- Established in 1979, headquartered in Bangkok, Thailand
- Founded on joint initiative of the UNESCAP¹ and ITU
- 38 member countries and 130+ associate/affiliate members

- We are working within APG² with our ecosystem partners and regulators on planning for the next World Radio Conference (WRC-19) to develop regional proposals.
- Also actively working within AWG³ to help drive regional spectrum harmonization, spectrum sharing studies, and to encourage innovation.

1 United Nations Economic and Social Commission for Asia and the Pacific; 2 APT Conference Preparatory Group; 3 APT Wireless Group

Anyone can talk about 5G. We are creating it.

Qualcomm Research 5G NR end-to-end prototype systems

Accelerating 5G NR commercialization

Test, demonstrate and verify our 5G designs

Drive and track 3GPP 5G NR standardization Achieve impactful trials with network operators

Drive timely commercialization

lcomm Research is a division of Qualcomm Technologies, Inc.

Thank you

Follow us on: **f f in t** For more information, visit us at: www.qualcomm.com & www.qualcomm.com/blog

Nothing in these materials is an offer to sell any of the components or devices referenced herein.

©2016-2017 Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Reserved

Qualcomm, Snapdragon, and Why Wait are trademarks of Qualcomm Incorporated, registered in the United States and other countries. Other products and branc names may be trademarks or registered trademarks of their respective owners.

References in this presentation to "Qualcomm" may mean Qualcomm Incorporated, Qualcomm Technologies, Inc., and/or other subsidiaries or business units within the Qualcomm corporate structure, as applicable applications in compared includes Qualcomm Sicensing husiness, CTL, and the vast majority of its patent portfolio. Qualcomm Technologies, Inc., a wholly-owned subsidiary of Qualcomm Incorporated, operates, along with its subsidiaries, substantially all of Qualcomm's events, and the subsidiaries substantially all of Qualcomm's events and events business profition. Subsidiaries, substantially all of Qualcomm's events and events business profition is seminorductor business. Of CT

Disruptive Analysis

Don't Assume

Spectrum-Sharing & CBRS Business Models

Dean Bubley, Disruptive Analysis

Spectrum Futures, September 2017

dean.bubley@disruptive-analysis.com

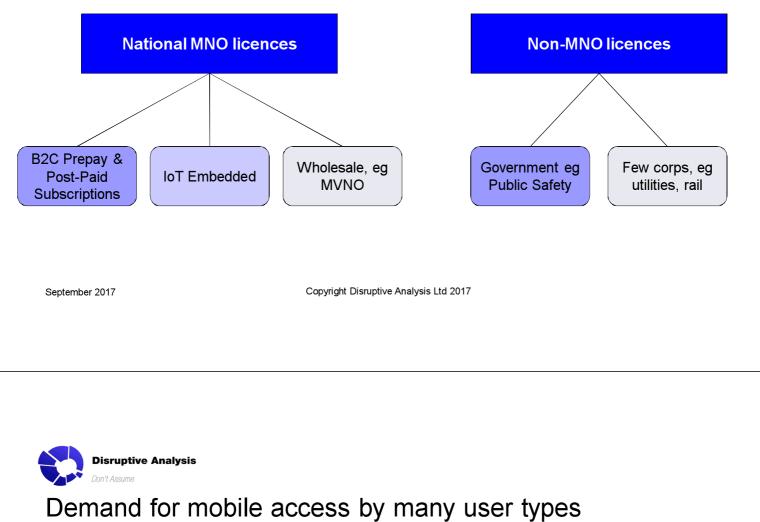
@disruptivedean

Dean Bubley & Disruptive Analysis

- Tech/telecom analyst & strategic consulting since 1991
- Futurism, Forecasting, Anti-Forecasting, Policy
- Cross-silo, contrarian, independent
- Often provocative. Sometimes obscure. Occasionally wrong.

Network Tech, Policy & Business Models

Communications Apps & Services


Telecom-Futurism

September 2017

Copyright Disruptive Analysis Ltd 2017

Dedicated spectrum enables limited business models

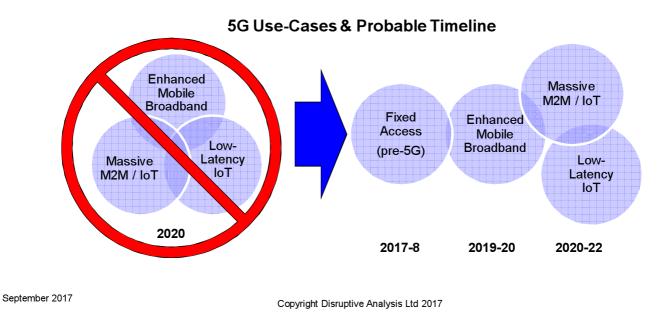
Onsite Employees & collaboration

Guests & visitors

Onsite Mobile IoT

Safety & Security

Sensors & controls (non-mobile)



Tenants & Contractors

September 2017

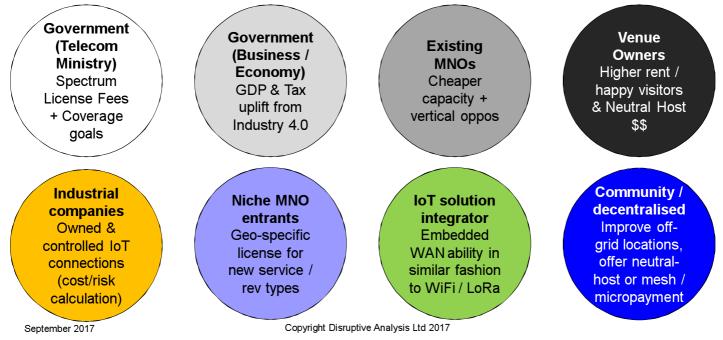
Rethinking the 5G roadmap....

MNOs cannot cover the needs of every vertical

September 2017

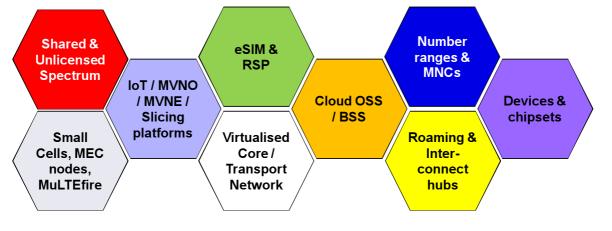
Copyright Disruptive Analysis Ltd 2017

WiFi & unlicensed bands: lessons in new business models



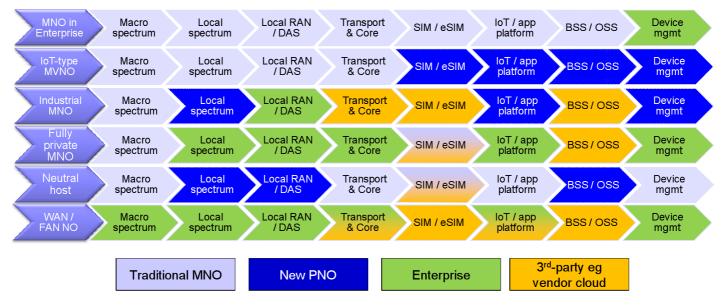
September 2017

Copyright Disruptive Analysis Ltd 2017



Many possible stakeholders / models with shared spectrum

Key ingredients for "4G / 5G private MNOs" emerging



& Facebook TIP, IoT connectivity specialists, blockchains, Al....

September 2017

Many possible SP / MNO / VNO types

Copyright Disruptive Analysis Ltd 2017

CBRS-type spectrum sharing model could be beneficial

- Many different business models
- IIoT & Industry 4.0 pitch
- Neutral hosts / Communities
- Opportunities for MNOs / MVNOs
- Various options for inhouse / outsourced
- WiFi experience suggests innovation unbounded

September 2017

Copyright Disruptive Analysis Ltd 2017

www.disruptive-analysis.com disruptivewireless.blogspot.com @disruptivedean

information@disruptive-analysis.com

Skype:disruptiveanalysis appear.in/disruptiveanalysis

CBRS

Why, How, Where, When?

Dave Wright

Director, Regulatory Affairs & Network Standards, Ruckus Secretary, CBRS Alliance

@wifidave

Goals for this Session

- Why? The Need for and Origins of CBRS
- How? An Overview of CBRS
- Where? The Roles of WInnForum and the CBRS Alliance
- When? Status of Commercial Operation
- Application to other Geographies
- Additional Resources

Ruckus

BROCADE[⊠]

Citizens Broadband Radio Service

SPECTRUM FUTURES

CBRS – The Backstory

REPORT TO THE PRESIDENT REALIZING THE FULL POTENTIAL OF GOVERNMENT-HELD SPECTRUM TO SPUR ECONOMIC GROWTH Executive Office of the President President's Council of Advisors on Science and Technology JULY 2012

Many notable participants, including:

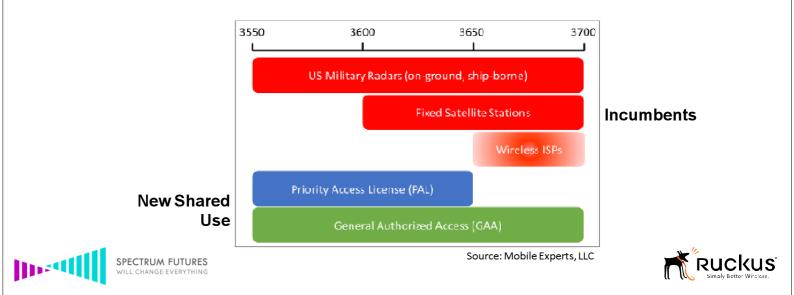
- Tom Wheeler (prior to becoming FCC Chairman)
- Yochai Benkler (Harvard economist)
- Preston Marshall (Google / Access Technologies)
- John Leibovitz (FCC WTB Liaison)

PCAST Report: <u>https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/pcast_spectrum_report_final_july_20_2012.pdf</u> Open Wireless vs. Licensed Spectrum: Evidence from Market Adoption (Benkler): https://cyber.harvard.edu/publications/2012/unlicensed_wireless_v_licensed_spectrum

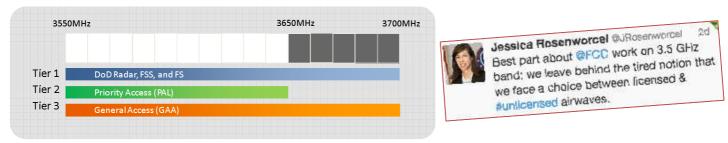
SPECTRUM FUTURES WILL CHANGE EVERYTHING

Ruckus

Spectrum Sharing Critical to < 10 GHz Access


2 GHz								12 GHz
2483.5 MHz 2483.5 MHz US Restricted bands 2290-2700	UT Bands Stretest March State 105 50,57 312 313 105 50,57 312 313 105 50,57 312 313 105 50,57 312 313 105 50,50 310 200 5100 3100 3100 3100 3100	3600-4200 Fixed uWave 3.44.2 765 00. 3600-4400 DOD Mission, Functions, and 4200-4600		Br 160x 5.925 GHz	7.125-8.450	85-90	Find silver	16.94 1637117 1137132 132827 1838-1846 1837117 11396123 132827 12.7 GHz 184617 DOD Mission, Functions, and Usage
ECA Defense Systems	2700-3600 (Military Rodo Location)	Usae Aeronautical Military Systems Aeronautical Military Systems Maritime Military Systems Telemetry/ <u>Telecommand</u> (military)	4200-4990 4400-4990 4400-4990 4400-4990	ECA Defense Systems	7.25-8.4 • Land Military Systems • Satellite Military Systems	8.5-9.3 • Land Military Systems • Satellite Military Systems	Satellite Military Systems syste Radio Location (Military) Land Satell	nautical military

- Virtually no available spectrum (full of government and commercial incumbents)
- "Clear and Repurpose" takes too long and is politically challenging
- Look for spectrum where incumbent use is "light" in terms of geography, time, or frequency

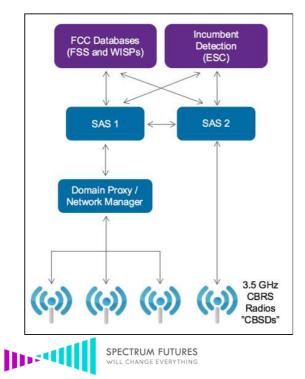


CBRS

Provides for new commercial use on a shared access basis in the 3550-3700 MHz band, while protecting incumbent federal and commercial operations.

3 Tier Spectrum Sharing – Blurring the Lines

Tier 1 – Navy Radars protected (including active sensing and preemption), FSS (satellite) protected, FS (WISPs) protected short term then transition to CBRS (Part 96) operation


- Tier 2 Priority Access Licenses (PAL) available in 3550-3650 MHz
 - Licensed at the census tract level (~74K nationally)
 - 3 Year Term

CHANGE EVERYTHING

- 10 MHz Channels, no more than 70 MHz can be allocated for PAL, a single entity may only purchase 40 MHz of PAL in a tract, must be 2 bidding entities in a tract for PALs to be issued
- PALs give a right to an amount of spectrum (10 MHz channel), but not to a specific frequency assignment
- Tier 3 General Authorized Access (GAA) available in 3550-3700 MHz

• Opportunistic/Permissive use of the band where and when it is not used by Tier 1 or Tier 2 SPECTRUM FUTURES

CBRS Conceptual Framework

Spectrum Access System (SAS)

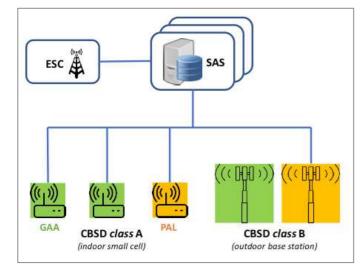
 Centrally coordinates access to the shared spectrum, enforcing priorities and modeling the RF environment

Environmental Sensing Capability (ESC)

Detects incumbent activity and informs SAS so that channels can be cleared of lower priority use

Domain Proxy

 CBSD aggregation and proxy function for large networks, can be integrated with an EMS / NMS or be standalone


•CBRS Device (CBSD)

 Radio nodes operating in the CBRS band, must be centrally coordinated by a SAS in order to transmit

Ruckus

CBSD Types

Source: Mobile Experts, LLC

Device	Maximum EIRP (dBm/10 megahertz)	Maximum PSD (dBm/MHz)
End User Device	23	n/a
Category A CBSD	30	20
Category B CBSD*	47	37

* Category B CBSDs will only be authorized for use after an ESC is approved and commercially deployed consistent with [Ref-2, 96.15 and96.67].

- "CBSDs must [shall] support transmit power control capability and the capability to limit their maximum EIRP and the maximum EIRP of associated End User Devices in response to instructions from an SAS.
- End User Devices shall include transmit power control capability and the capability to limit their maximum EIRP in response to instructions from their associated CBSDs."

SPECTRUM FUTURES

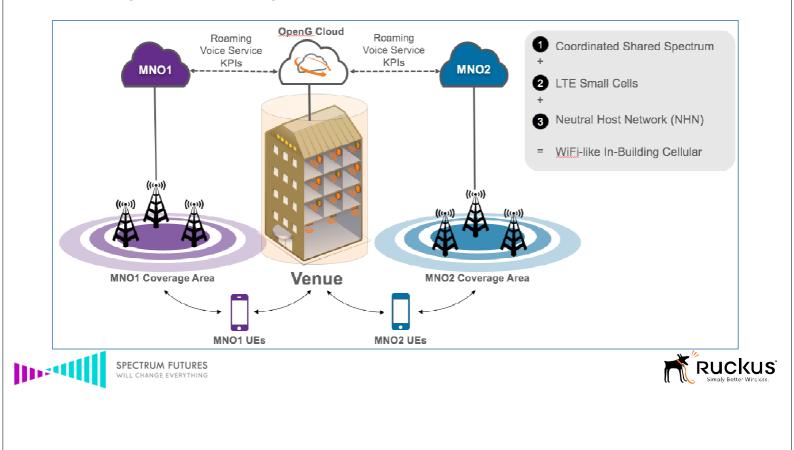
Source: WInnForum, CBRS Operational and Functional Requirements

Indoor Cellular Coverage Current Options – Falling Short

DAS: Focused on the high-end

- Focused on venues > 200K sq ft
- Expensive
- Complex to deploy

Small Cell: Flawed deployment model


- Complex to deploy
- No clear neutral host solution
- Dependency on spectrum allocation, RF planning, mobile operator direct support

SPECTRUM FUTURES

Putting the Pieces Together

Wireless Innovation Forum (WInnForum) Spectrum Sharing Committee (SSC)

- Fleshing out the FCC's CBRS Framework
 - WG1: Operational and Functional Requirements
 - WG2: Security
 - WG3: Protocols
 - WG4: Test and Certification
 - WG5: Operations
- Air Interface Independent
- Communicating regularly with the FCC

]]]]]]]]]]]

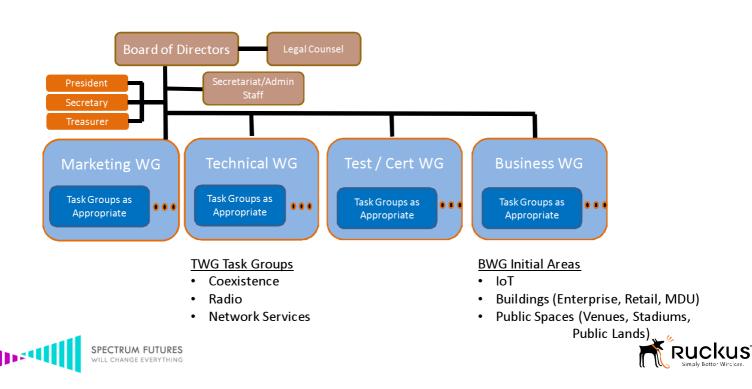
SPECTRUM FUTURES

82 members

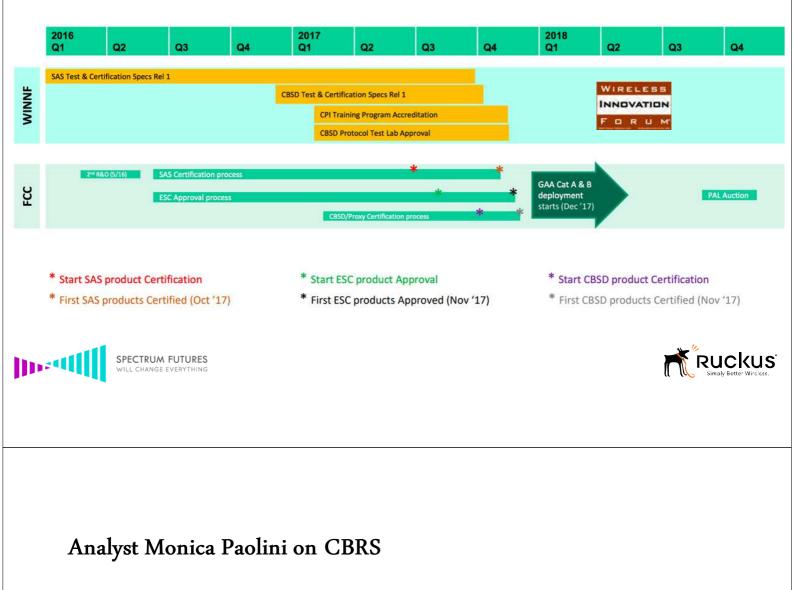
http://www.wirelessinnovation.org/

CBRS Alliance

ALLIANCE

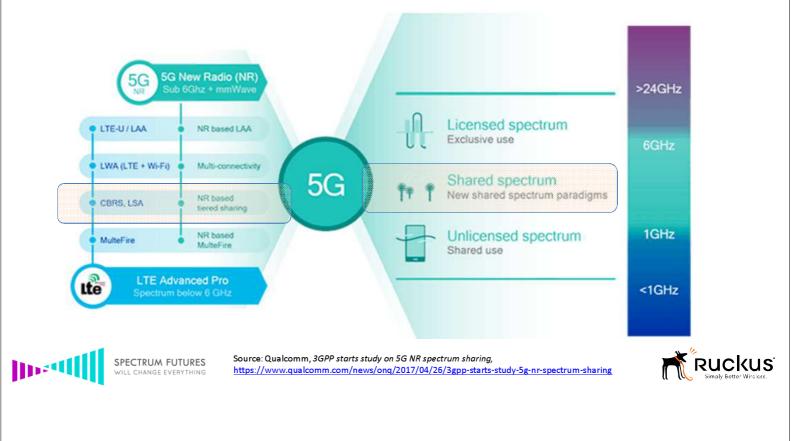

Mission & Purpose

Support the development, commercialization, and adoption of <u>LTE solutions</u> for the US 3.5 GHz Citizens Broadband Radio Service (CBRS)


- Evangelize CBRS technology and applications
- Drive necessary technology requirements (Coexistence, Radio, E2E Services)
- Establish certifications to ensure vendor interoperability

CBRS Alliance Structure

CBRS Timeline (WInnForum)


FierceWireless April 7th: "It's somewhat remarkable how far the 3.5 GHz sector has come in one year." –

"If this works out, it's going to have a huge impact, not just in the U.S. but other parts of the world as well."

Spectrum Sharing and 5G

What about the Rest of the World?

Other countries are deploying or evaluating Spectrum Sharing:

- Australia: ACMA 1.5 and 3.6 GHz Consultation
- Singapore: IMDA 5G Consultation
- Hong Kong: OFCA Consultation on 3.4-3.7 GHz
- Netherlands: Company Specific Licenses in 3.5 GHz
- UK: National Infrastructure Commission Report

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/577906/ CONNECTED_FUTURE_ACCESSIBLE.pdf

- UK: Ofcom 3.8-4.2 GHz Consultation
- France: ARCEP 2.6 and 3.5 GHz Consultation
- Germany: Key Elements Paper 2 and 3.6 GHz
- Italy: 5G Enquiry (enabling vertical industries)
- Switzerland: 5G Enquiry (enabling vertical industries)

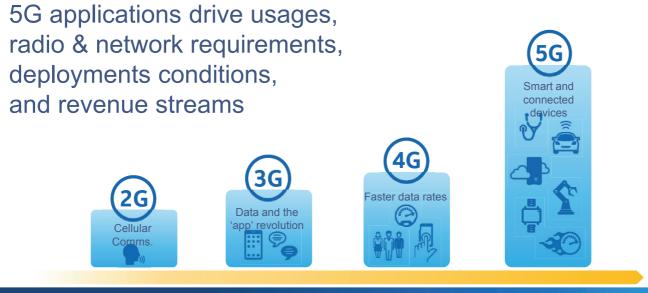
SPECTRUM FUTURES WILL CHANGE EVERYTHING

Where to Learn More

- FCC
 - 2nd R&O https://www.fcc.gov/document/35-ghz-order-recon-and-2nd-ro
 - SAS / ESC Administrator Approval Proceeding <u>https://www.fcc.gov/ecfs/</u> (Proceeding 15-319)
- WInnForum
 - Version 1.0 Specs http://www.wirelessinnovation.org/specifications
 - Webinar on SAS-SAS and SAS-CBSD Protocol Specs <u>https://www.youtube.com/watch?v=vJJFFHmjI8E&feature=youtu.be</u>
- CBRS Alliance
 - Whitepapers on Shared Spectrum LTE, IoT, and Private LTE Business Models https://www.cbrsalliance.org/copy-of-in-the-news
- MulteFire Alliance (NHN Access Mode multi-operator support)
 - Version 1.0 Specs <u>http://www.multefire.org/specification/</u>

THANK YOU!

5G Spectrum Tutorial


Reza Arefi Director, Spectrum Strategy Next Generation Standards Intel Corporation

Part 1 TECHNICAL & OPERATIONAL REQUIREMENTS AND REGULATORY CONSIDERATIONS

Part 1 Outline

- Technical Requirements
 - Performance-related
 - Application-related
- Operational Requirements
 - Coverage & Capacity
 - Deployment Environment Considerations
- Regulatory Considerations
 - Licensing schemes
 - National priorities and leadership

5G: Evolution to a Smart and Connected World

(intel)

(intel)

Usage Scenarios of IMT for 2020 and Beyond

Enhanced Mobile Broadband

 Gigabytes in a second
 3D video, UHD screens

 Smart Home/Building
 Work and play in the cloud

 Voice
 Industry automation

 Smart City
 Future IMT

 Self Driving Car

 Massive Machine Type Communications
 Ultra-reliable and Low Latency Communications

Source: Recommendation ITU-R M.2083, "IMT Vision - Framework and overall objectives of the future development of IMT for 2020 and beyond"

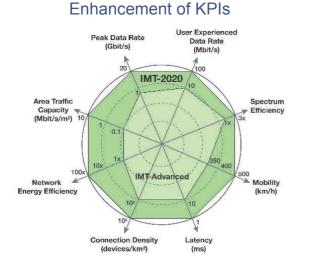
Three Major Usage Scenarios of 5G

Enhanced Mobile Broadband

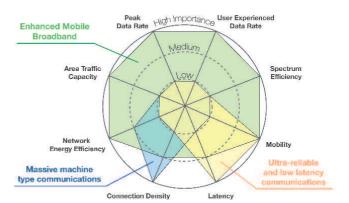
- Improved performance over existing Mobile Broadband applications for an increasingly seamless user experience.
 - Covers both wide-area coverage and hotspots, which have different requirements.
 - Hotspots areas with high user density, very high traffic capacity, low mobility, user data rate is higher than that of wide area coverage.
 - Wide area coverage seamless coverage and medium to high mobility, much improved user data rate compared to existing data rates.

Ultra-reliable and low latency communications

- Stringent requirements for capabilities such as throughput, latency and availability.
 - Examples include industrial manufacturing, remote medical surgery, distribution automation in a smart grid, transportation safety, etc.

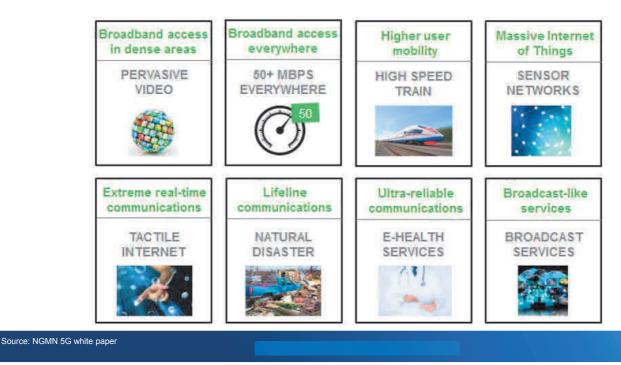

Massive machine type communications

- Characterized by a very large number of connected devices typically transmitting a relatively low volume of non-delaysensitive data.
 - Low cost devices, very long battery life.


(intel)

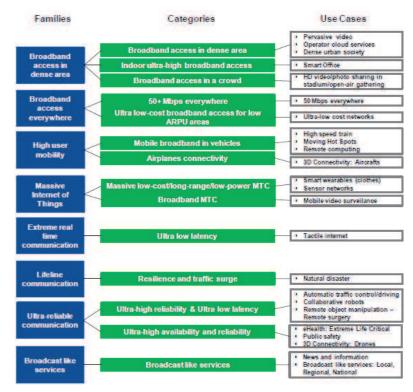
Key Performance Indicators (KPIs) from ITU-R

- The peak data rate for enhanced Mobile Broadband is expected to reach 10 Gbit/s, and under certain scenarios
 would support up to 20 Gbit/s.
- User experienced data rates covering a variety of environments.
 - For wide area coverage cases, 100 Mbit/s is expected.
 - In hotspot cases, expected to reach higher values (e.g. 1 Gbit/s).
- The spectrum efficiency is expected to be 3 times higher than IMT-Advanced for enhanced Mobile Broadband.
 - Will vary between scenarios and could be higher in some scenarios (e.g. 5 times, subject to further research).
 - Expected to support 10 Mbit/s/m2 area traffic capacity (e.g. in hot spots).
- The energy consumption for the radio access network of IMT-2020 not to be greater than IMT networks deployed today.
- Latency of 1 ms over-the-air.
- To enable high mobility up to 500 km/h with acceptable QoS.
- Connection density of up to 10⁶ /km², for example in massive machine type communication scenarios.


KPIs in various usage scenarios

M.[IMT-2020.TECH PERF REQ] and M.[IMT-2020.EVAL] include details and conditions/scenarios to meet various KPIs

Source: From M.2083: "The values in the figure above are targets for research and investigation for IMT-2020 and may be further developed in other ITU-R Recommendations, and may be revised in the light of future studies."


5G Use Case Families and Examples

(intel)

Use Case Categories

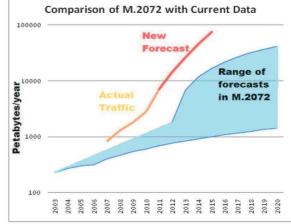
- Various categories are envisaged, each with specific requirements imposing conditions on radio interface design.
- Some have spectrum implications that should be considered in order to optimize performance.

Source: NGMN 5G white paper

A Changing Face

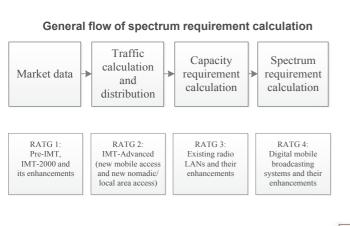
From 2G to 4G and beyond, technology has moved from providing **user connectivity** to a means for creating **connected societies**.

Recommendation ITU-R M.2084


"It is expected that the socio-technical trends and the evolution of mobile communications systems will remain tightly coupled together and will form a foundation for society in 2020 and beyond." The trend is evident in emergence of new applications and use cases such as those discussed earlier:

- There are already several devices/subscription per user
- Machines and sensors are becoming increasingly an important part of our daily lives

Paradigm Shift


- Over the past decades, exponential increase in data consumption has dominated the overall demand for mobile broadband services.
- The global data consumption of networks seems to undergo contiguous explosive growth.
- Increasing data consumption of individuals (browsing, downloading, streaming, etc.), however, is complemented by new and emerging applications requiring various types and amounts of connectivity/data/resources dictating radio interface capabilities.
- New application centric methodologies are needed to model this growth.

ITU traffic estimates done at year 2005 (Report ITU-R M.2072)

Source: Report ITU-R M.2243, "Assessment of the global mobile broadband deployments and forecasts for IMT", 2011.

IMT-Advanced (4G) Spectrum Requirements

(Total spectrum requirements for both RATG 1 and RATG 2 in the year 2020

	Total spectrum requirements for RATG 1	Total spectrum requirements for RATG 2	Total spectrum requirements RATGS T and 2
Lower user density settings	440 MHz	900 MHz	1 340 MHz
Higher user density settings	540 MHz	1 420 MHz 💊	1 960 MHz
	5		

Source: Report ITU-R M.2290, "future spectrum requirements estimate for terrestrial IMT."

5G User Experience

 User experience associated with use case categories could have spectrum implications in order to optimize overall performance

Use case category	User Experienced Data Rate	E2E Latency	Mobility
Broadband access in dense areas	DL: 300 Mbps UL: 50 Mbps	10 ms	On demand, 0-100 km/h
Indoor ultra-high broadband access	DL: 1 Gbps, UL: 500 Mbps	10 ms	Pedestrian
Broadband access in a crowd	DL: 25 Mbps UL: 50 Mbps	10 ms	Pedestrian
50+ Mbps everywhere	DL: 50 Mips UL: 25 Mips	10 ms	0-120 km/h
Ultra-low cost broadband access for low ARPU areas	DL: 10 Mbps UL: 10 Mbps	50 ms	on demand: 0- 50 km/h
Mobile broadband in vehicles (cars, trains)	DL: 50 Mbps UL: 25 Mbps	10 ms	On demand, up to 500 km/h
Airplanes connectivity	DL: 15 Mbps per user UL: 7.5 Mbps per user	10 ms	Up to 1000 km/h
Massive low- cost/long-range/low- power MTC	Low (typically 1-100 kbps)	Seconds to hours	on demand: 0- 500 km/h
Broadband MTC	See the requirements for the Broad everywhere categories	band access in dense are	as and 50+Mbps
Ultra-low latency	DL: 50 Mbps UL: 25 Mbps	<1 ms	Pedestrian
Resilience and traffic surge			0-120 km/h
Ultra-high reliability & Ultra-low latency	DL: From 50 kbps to 10 Mbps; UL: From a few bps to 10 Mbps	1 ms	on demand: 0- 500 km/h
Ultra-high availability & reliability	DL: 10 Mbps UL: 10 Mbps	10 ms	On demand, 0- 500 km/h
Broadcast like services	DL: Up to 200 Mbps UL: Modest (e.g. 500 kbps)	<100 ms	on demand: 0- 500 km/h

5G System Performance

 System performance KPIs associated with use case categories could also have spectrum implications in order to optimize over all performance

Use case category	Connection Density	Traffic Density
Broadband access in dense areas	200-2500 /km²	DL: 750 Gbps / km2 UL: 125 Gbps / km2
Indoor ultra-high broadband access	75,000 / km ² (75/1000 m ² office)	DL: 15 Tbps/km2 (15 Gbps / 1000 m2) UL: 2 Tbps / km2 (2 Gbps / 1000 m2)
Broadband access in a crowd	150,000 / km² (30.000 / stadium)	DL: 3.75 Tbps / km2 (DL: 0.75 Tbps / stadium) UL: 7.5 Tbps / km2 (1.5 Tbps / stadium)
50+ Mbps everywhere	.400 / km² in suburban 100 / km² in rural	DL: 20 Gbps / km2 in suburban UL: 10 Gbps / km2 in suburban DL: 5 Gbps / km2 in rural UL: 2.5 Gbps / km2 in rural
Ultra-low cost broadband access for low ARPU areas	16 / km²	16 Mbps / km²
Mobile broadband in vehicles (cars, trains)	2000 / km ² (500 active users per train x 4 trains, or 1 active user per car x 2000 cars)	DL: 100 Gbps / km ² (25 Gbps per train, 50 Mbps per car) UL: 50 Gbps / km ² (12.5 Gbps per train, 25 Mbps per car)
Airplanes connectivity	80 per plane 60 airplanes per 16,000 km ²	DL: 1.2 Gbps / plane UL: 600 Mbps / plane
Massive low-cost/long-range/low-power MTC	Up to 200,000 / km ²	Non critical
Broadband MTC	See the requirements for the Br and 50+Mbps everywhere cated	oadband access in dense areas pories
Ultra-low latency	Not critical	Potentially high
Resilience and traffic surge	10,000 / km ²	Potentially high
Ultra-high reliability & Ultra-low latency [*] (*) the reliability requirement for this category is described in Section 4.4.5	Not critical	Potentially high
Ultra-high availability & reliability* (*) the reliability requirement for this category is described in Section 4.4.5	Not critical	Potentially high
Broadcast like services	Not relevant	Not relevant

Source: NGMN 5G white paper, 2015

(intel)

5G Applications and Spectrum Implications

To be enabled, technical requirements of 5G applications need to be addressed.

- Adequate design of the 5G radio interface.
- Access to appropriate frequency ranges.

While some applications, e.g. 4k/8k video, would require ultra-high speed connections, others might need very robust performance and long range.

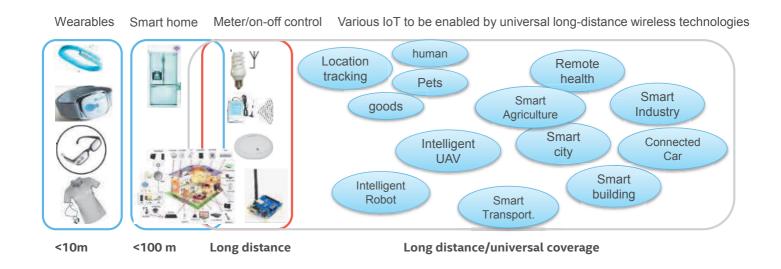
Applications already supported by 4G and its evolution are expected to have additional capabilities.

Consideration of required spectrum for 5G includes applications foreseen for future networks.

Application Requirements

 Examples of various 5G applications for the three main usage scenarios and their requirements impacting radio link design (not an exhaustive list)

Usage Scenario	Application	High-level Requirement
Massive Machine-Type Communications	Smart home	Operation in cluttered environment Obstacle penetration
	Smart office	Operation in cluttered environment Obstacle penetration High reliability radio links
	Smart city	Short to long range Operation in cluttered environment Operation near fast moving obstacles High reliability radio links Ground/obstacle penetration
	Sensor networks (industrial, commercial, etc.)	Short to long range Operation in cluttered environment Operation near fast moving obstacles Ground/obstacle penetration Mesh networking


Usage Scenario	Application	High-level Requirement
	UHD video (4k, 8k), 3D video (including broadcast services)	Ultra-high speed radio links Low latency (real-time video)
Enhanced Mobile	Virtual Reality	Ultra-high speed radio links Ultra-low latency
Broadband	Augmented Reality	Ultra-high speed radio links Low latency
	Tactile Internet	Ultra-low latency
	Cloud gaming	Ultra-high speed radio links Low latency
	Broadband kiosks	Ultra-high speed radio links Short range
	Vehicular (cars, buses, trains, aerial stations, etc.)	Ultra-high speed radio links Short to long range Support for low to high-Doppler environments

Source: 5G Spectrum Recommendation, 5G Americas, 2015

Usage Scenario	Application	High-level Requirement
Ultra-reliable Communications	Industrial automation	Ultra-high reliability radio links High speed radio links Low to ultra-low latency Short to long range Operation in cluttered environments
	Mission-critical applications e.g. e- health, hazardous environments, rescue missions, etc.	Ultra-high reliability radio links High speed radio links Low to ultra-low latency Short to long range Operation in cluttered environments Ground/obstacle penetration
	Self-driving vehicles	Ultra-high reliability radio links High speed radio links Low to ultra-low latency Short to long range Operation in cluttered environments Operation near fast moving obstacles

(intel)

Example: mMTC Range Requirements

Spectrum Implications

 Examples of spectrumrelated implications of high-level requirements for various 5G applications in the three main usage scenarios (not an exhaustive list)

Usage Scenario	High-level Requirement	Potential Spectrum-Related Implications
Enhanced Mobile Broadband (eMBB)	Ultra-high speed radio links	Ultra-wide carrier bandwidths, e.g. 500 MHz
(embb)		Multi-gigabit front haul/backhaul, indoor
	High speed radio links	Wide carrier bandwidths, e.g. 100 MHz Gigabit fronthaul/backhaul
	Support for low to high- Doppler environment	Depends on the throughput requirement
	Ultra-low latency	Short range implications
	Low latency	Mid-short range implications
	Ultra-high reliability radio links	Severe impact of rain and other atmospheric effects on link availability in higher frequencies, e.g. mm-wave, for outdoor operations
	High reliability radio links	Impact of rain and other atmospheric effects on link availability in higher frequencies, e.g. mm-wave, for outdoor operations
Ultra-reliable Low-Latency	Short range	Higher frequencies, e.g. mm-wave
Communications (URLLC)	Medium-Long range	Lower frequencies, e.g. sub-6 GHz
	Ground/obstacle penetration	Lower frequencies, e.g. sub-1 GHz
Massive Machine-Type	Operation in cluttered	Diffraction dominated environment in
Communications (mMTC)	environment	lower frequencies
		Reflection dominated environment in higher frequencies
	Operation near fast moving obstacles	Frequency-selective fading channels
	Mesh networking	High-speed distributed wireless backhauls operating in-band or out-of- band

Source: 5G Spectrum Recommendation, 5G Americas, 2015

Spectrum Range Considerations

Certain applications require highly robust performance over long distances.

A characteristic of lower frequencies.

Other applications need very high throughput over shorter distances.

• A characteristic of higher frequencies.

These aspects could be optimally achieved through access to a variety of bands to deliver full 5G service.

- Needs for sufficient amount of spectrum in a variety of bands e.g. <1 GHz, < 6 GHz, > 6 GHz
 - GHz wider reach; examples include: macro cells, robust obstacle penetration, sensor networks, automotive, etc.
 - 6 GHz coverage/capacity trade-off; examples include: small cells, capacity boost, etc.
 - > 6 GHz higher throughput; examples include: hot spots, UHD video streaming, VR, AR, etc.

Mapping of Usage to Spectrum Ranges

Usage Scenario	High-level Requirement	Potential Spectrum-Related Implications	Spectrum Ranges Considered Suitable
Enhanced Mobile Broadband	Ultra-high speed radio links	Ultra-wide carrier bandwidths, e.g. 500 MHz Multi-gigabit front haul/backhaul, indoor	> 24 GHz
	High speed radio links	Wide carrier bandwidths, e.g. 100 MHz Gigabit fronthaul/backhaul	3-6 GHz
	Support for low to high-Doppler environment	Depends on the throughput requirement	All ranges
	Ultra-low latency	Short range implications	3-6 GHz, > 24 GHz
	Low latency	Mid-short range implications	3-6 GHz
	Ultra-high reliability radio links	Severe impact of rain and other atmospheric effects on link availability in higher frequencies, e.g. mm-wave, for outdoor operations	< 6 GHz
	High reliability radio links	Impact of rain and other atmospheric effects on link availability in higher frequencies, e.g. mm-wave, for outdoor operations	< 6 GHz
Ultra-reliable	Short range	Higher frequencies, e.g. mm-wave	> 24 GHz
Communications	Medium-Long range	Lower frequencies, e.g. sub-6 GHz	< 6 GHz
	Ground/obstacle penetration	Lower frequencies, e.g. sub-1 GHz	< 1.5 GHz
Massive Machine- Type Communications	Operation in cluttered environment	Diffraction dominated environment in lower frequencies Reflection dominated environment in higher frequencies	All ranges
	Operation near fast moving obstacles	Frequency-selective fading channels	All ranges, especially below 6 GHz
	Mesh networking	High-speed distributed wireless backhauls operating in-band or out-of-band	> 24 GHz
: 5G Spectrum Recommer	idation, 5G Americas, 2017		Ú

Performance Requirements

High-level methodology based on application performance requirements developed in industry (e.g. NGMN), followed by ITU-R

Source: NGMN input to 3GPP RAN workshop on 5G, September 2015

General Approach

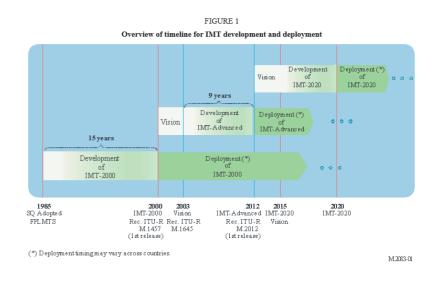
- For a given deployment scenario, requirements of all user applications with potential concurrent operation could be derived.
- Number of users/devices/elements per site, number of sites, inter-site distance, cell area leads to cell capacity.
- Given spectral efficiency targeted for the deployment scenario, spectrum supporting the concurrent applications in a given deployment scenario could be obtained.

The detailed process depends on assumptions on several factors decided through the ITU-R process

(intel)

Performance Requirements of Verticals - Examples

- Smart Sustainable City (SSC) requirements according to ITU-T¹:
 - Smart grid: up to ~1.5 Mbytes reliably delivered in in 8 ms
 - Emergency services:
 - Throughput: 100 Mbit/s in high mobility
 - Latency: Down to 1 ms in high mobility
- Automotive
 - A self-driving car is expected to process 1 GB of data every second²
 - Low latency (1 ms), high mobility (400 km/h), high reliability (~100%), high UL throughput (10s of Mbit/s), high positioning accuracy (0.1 m), high density (>1000), etc.


2) smartdatacollective.com/bigdatastartups/135291/self-driving-cars-will-create-2-petabytes-data-what-are-big-data-opportunitie

^{1) &}lt;u>http://www.itu.int/en/ITU-T/focusgroups/ssc/Documents/Approved_Deliverables/TR-Overview-SSC.docx</u>

ITU-R Work on Technical Requirements & Spectrum Needs of IMT-2020

IMT Development in ITU-R

- Radio Interface Specifications of IMT Generations are included in ITU-R Recommendations M.1457 (3G), M.2012 (4G), and future M.[IMT-2020]
- Acceleration of the process over generations

Source: Recommendation ITU-R M.2083, "IMT Vision - Framework and overall objectives of the future development of IMT for 2020 and beyond"

Technical Performance-Related Needs of 5G

ITU-R Minimum Technical Performance Requirements

- Many of these requirements have spectrumrelated implications*
 - Type of spectrum (low/mid/high)
 - Bandwidth requirement
 - Amount of spectrum
 - Spectral efficiency values, latency, data rate values, connection density, etc.
- ITU-R used these to come up with spectrum needs

* For a sample analysis, see 5GAmericas white paper "5G Spectrum Recommendations", 2017

IMT-2020		
Technical Performance Requirements (TPR)	DL	UL
Peak Data Rate (Gbit/s)	20	10
Peak Spectral Efficiency (bit/s/Hz)	30	15
User-Experienced Data Rate (Mbit/s)	100	50
5-th %ile User Specral Efficiency (bit/s/Hz)		
Indoor Hotspot – eMBB	0.3	0.21
Dense Urban – eMBB (macro)	0.225	0.15
Rural – eMBB	0.12	0.045
Average Spectral Efficiency (bit/s/Hz)		
Indoor Hotspot – eMBB	9	6.75
Dense Urban – eMBB (macro)	7.8	5.4
Rural – eMBB	3.3	1.6
User Plane Latency (ms)		
eMBB	4	
URLLC	1	
Bandwidth (MHz)		
minimum	100	
up to (e.g. in higher bands) 100		000
Area Traffic Capacity - eMBB (Mbit/s/m ²)	1	10
Connection Density - mMTC (devices/km ²)	1000000	
Mobility - Normalized Traffic Ch. Data Rate (bit/s/Hz)		
Indoor Hotspot – eMBB (10 km/hr)		1.5
Dense Urban – eMBB (30 km/hr)		1.12
Rural – eMBB (120 km/hr)		0.8
Rural – eMBB (500 km/hr)		0.45

(intel)

IMT-2020 2-01

Evaluation Test Environments and Criteria

			Mapping	of test environme	nts and usage scen	arios	
		Usage scenarios		eMBB		mMTC	URLLC
		Test environments	Indoor Hotspot - eMBB	Dense Urban – eMBB	Rural – eMBB	Urban Macro – mMTC	Urban Macro – URLLC
require enviro under	2: An RIT needs to fulfil th ements for at least three nments; two test environ eMBB and one test envir mMTC or URLLC.	test with ments	Schedule P 5D 2016 No.23 No.24 No. (0)	Step1 and (40 months: #2:	2018 No.29 No.30 No.31 2 3 - #32) Step 3 (20 months: #28 - #32)	2019 20	020 No.35 No.36
for inc descri delibe the RI of Res f) for t	B: An RIT or SRIT6 will be lusion in the standardizat bed in Step 8 if, as the re ration by ITU-R, it is dete T or SRIT meets the requisolution ITU-R 65, <i>resolve</i> the five test environments rising the three usage sce	tion phase sult of rmined that lirements es 6 <i>e)</i> and	Step 4: Evaluation of candi Independent Evalua Critical milestones in r	ular letter ndidate RITs and SRITs ion of the RIT and SRIT owledgement of receipt date RITs and SRITs by tion Groups adio interface developm ropose RITs March 2016	Step 5:Review and co Step 5:Review to asse Step 7:Consideration - and decision Step 8:Development of step 8:Development of step 8:Development of (2): Cut off for evalua (3): WP 5D decides fr characteristics of I (4): WP 5D completes	5,6 and 7 s: #29 - #35) (12 months: ordination of outside evalue ss compliance with minimu of evaluation results, conser of radio interface Recomment tion report to ITU amework and key MT-2020 RTI and SRIT	(3) #33 - #36) (4) attion activities m requirements usus building

5G Spectrum Needs

IMT-2020 Spectrum needs for bands above 24 GHz

- Two approaches
 - Spectrum needs as dictated by certain TPRs
 - Spectrum needs as dictated by requirements of envisaged applications

$B = (D \times N)/S$

D: Maximum data rate supported by a user/device (bit/s) N: Number of simultaneously supported users/devices in a cell S: Spectral efficiency (bits/s/Hz)

Estimated spectrum needs based on cell edge and latency targets

-	
Examples	Spectrum needs
#1 – Based on cell-edge user throughput and	User experienced data rate of 1 Gbit/s:
spectral efficiency targets in Recommendation ITU-R M.2083 with <i>N</i> simultaneously served	3.33 GHz (<i>N</i> =1), 6.67 GHz (<i>N</i> =2), 13.33
users/devices at the cell-edge	GHz (<i>N</i> =4), e.g., Indoor
	User experienced data rate of 100 Mbits/s:
	0.67 GHz (N=1), 1.32 GHz (N=2), 2.64
	GHz (N=4), for wide area coverage
#2 – Based on cell-edge user spectral	0.83-4.17 GHz (for eMBB Dense Urban)
efficiency (obtained from 3GPP technical	3-15 GHz (for eMBB Indoor Hotspot)
specifications) and data rate targets (from	
Recommendation ITU-R M.2083) in two given	
test environments	
#3 – Impact of latency and spectral efficiency	With a file transfer of 10 Mbits by a single
targets and a typical user throughput value on	user at cell-edge in 1 msec: 33.33 GHz
spectrum needs	(one direction)
	With a file transfer of 1 Mbit by a single user at cell-edge in 1 msec: 3.33 GHz
	(one direction)
	With a file transfer of 0.1 Mbits by a single user at cell-edge in 1 msec: 333 MHz (one direction)

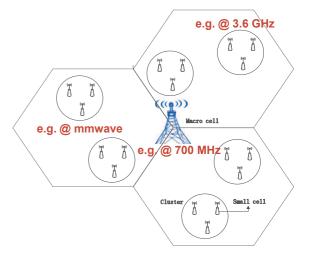
(intel)

5G Spectrum Needs Summary

- Differences in values due to different starting point assumptions in each example
- In both approaches, the bottleneck points to several GHz of spectrum in order to meet the most demanding targets

Estimated spectrum needs based on the application-based approach

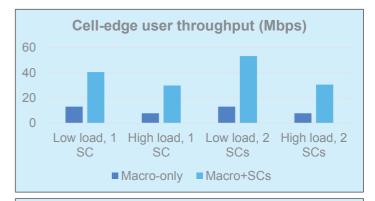
Example	Teledensities	24.25- 33.4 GHz	37-52.6 GHz	66-86 GHz	Total
Example 1	Overcrowded, dense urban and urban areas	3.3 GHz	6.1 GHz	9.3 GHz	(18.7 GHz)
	Dense urban and urban areas	2.0 GHz	3.7 GHz	5.7 GHz	11.4 GHz
Example 2	Highly crowded area	666 MHz	1.2 GHz	1.9 GHz	3.7 GHz
	Crowded area	333 MHz	608 MHz	933 MHz	(1.8 GHz)

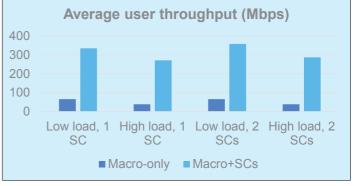

Spectrum needs based on the information from some countries		
Frequency ranges	24.25-43.5 GHz	43.5-86 GHz
Spectrum needs	2-6 GHz	5-10 GHz

Adding Operational Context

HetNet for Coverage/Capacity Trade-off

A.k.a. "anchor-booster" configuration includes

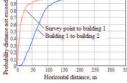

- a macro-cell coverage layer, typically operated at low-range frequencies such as 700 MHz or 2 GHz, and
- a small cell layer that operates at higher frequencies such as mid-range spectrum around 4 GHz or even higher bands near or in the mmwave spectrum
- users data plane switches between macro layer and small cell layer, optimizing network performance in line with user's QoS requirements, control plane on macro layer at all times

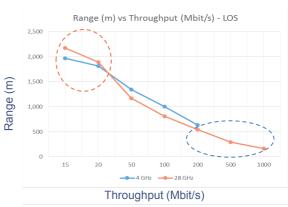


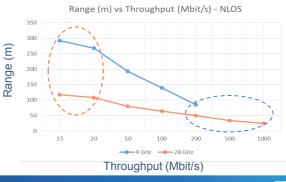
Example Comparison

Macro at 2 GHz (20 MHz), small cell at 4 GHz (100 MHz, 4x4 MIMO)

- Across all scenarios analyzed, introduction of C-band small cells:
 - the cell-edge user throughput is enhanced by as much as 3.7 times
 - the average user throughput is enhanced by as much as 6.3 times




(intel)


Adding Higher Bands

Adding a 28 GHz layer (1 GHz bandwidth, 8x16/4x4)

- While 4 GHz range is generally superior to that of 28 GHz, higher throughput values are only possible with the conditions achievable at higher frequencies:
 - Higher channel bandwidth
 - Higher EIRP through large antenna array size
- Environment (statistics of LOS/NLOS) plays a role

Other Spectrum-related Considerations

Multiple-operator deployments

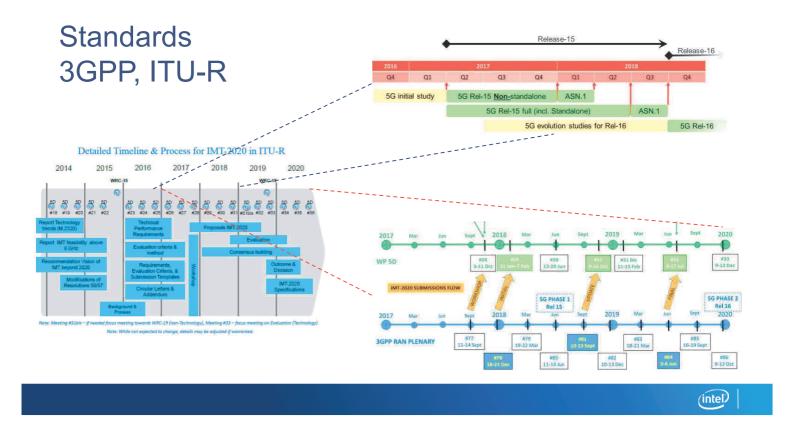
- Needs for sufficient amount of spectrum to build multiple networks
- Wireless backhaul/fronthaul requirements

Interference impacts of adjacent systems

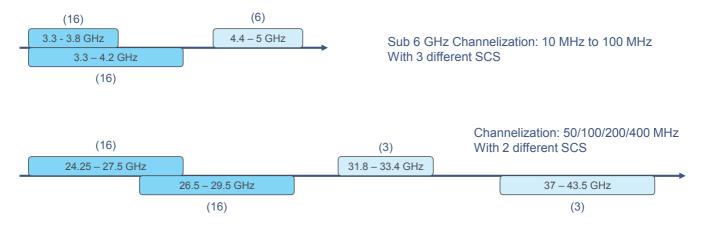
 Consideration of proper separation (e.g. guardband) of adjacent networks/bands, including the unsynchronized TDD scenario

Frequency reuse

Need for additional carriers even though reuse 1 is dominant scheme

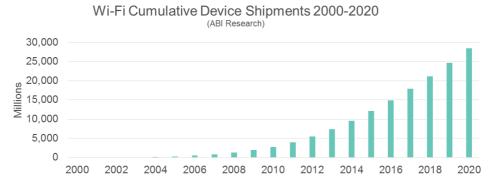

Technical features

 Multiple antennas, beamforming, novel multiple access and coding schemes, and other factors impacting spectral efficiency of 5G


(intel)

Source: 5G Spectrum Recommendations, 5G Americas, 2015

Standardization of 5G



3GPP New NR Bands (August 2017)

(# of operators supporting the WI)

Unlicensed Spectrum Needs

- In 2015, 802.11ac was 59.5% of home-routers shipped
- By 2020, 96.6% of home routers will be equipped with 802.11ac (i.e., 5 GHz) (<u>CISCO VNI, 2016</u>)
- Growing offload from cellular networks on to Wi-Fi (in 2015 over 50% of cellular traffic offloaded to Wi-Fi, see <u>Cisco VNI</u> 2016)
- Wi-Fi Alliance estimate (<u>https://www.wi-fi.org/discover-wi-fi/unlicensed-spectrum</u>)
 - Spectrum needs in addition to existing (2.4 and 5 GHz) by 2025:
 - Lower bound: 500 MHz to 1 GHz
 - Upper bound: 1.3 1.8 GHz
 - Need contiguous spectrum to accommodate 160 MHz channels of 802.11ac

Part 2 SPECTRUM OPPORTUNITIES FOR 5G AND BEYOND

Part 2 Outline

- Towards Connected Societies
 - Multiple levels of connectivity and implications on spectrum
 - What to connect?
- Optimization of Spectral Resources
 - Application-based
 - Network-based
- New Paradigms
 - Moving away from regulatory silos

Connected

- Current regulatory frameworks allow terrestrial connectivity at two levels
 - Local-area, e.g. short range, indoor
 - Wide-area, e.g. cellular
- These regulatory frameworks reflect existing types of connectivity/devices
 - BT, Wi-Fi, WiGig
 - 2G, 3G, 4G, and now on to 5G
- Connected "things" are growing in number
 - in diverse and unusual set of places
 - Connected device, home, campus, community, city, and larger

Additional Levels of Connectivity

- With addition of home, campus, community, city levels of connectivity supporting millions of devices
 - What are the optimum regulatory frameworks for enabling coexistence?
 - What are the optimum spectral resources to maximize performance and minimize interference?

Optimization of Spectral Resources

- What needs to be changed in identification, allocation, and use of spectrum to accommodate new use cases
 - We will have many low-, mid-, and high-range spectrum but not all spectrum is equal; congestion in one place, underutilization in another
- Mapping spectrum assets to best use to create solutions, deployment models, and business opportunities, for example in areas such as:
 - Future ITS
 - Tactile/Haptic
 - Deep learning/Al
 - AR/VR

New Regulatory Paradigms

New paradigms are needed to facilitate better use of spectrum and increase spectral efficiency beyond traditional methods of sharing

- Existing classification of Radiocommunication Services (Mobile, Fixed, FSS, etc.) is based on silos
 - Services are designed and operated independently
 - Therefore, regulations need to step in to prevent from interference
- Is it possible to move from regulatory silos to a regulatory safety net?
 - Same entities could design/deploy/operate more than one service as long as there are financial incentives
 - Regulations could lead to optimized spectrum use as long as technical solutions exist

Legal Notices and Disclaimers

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit <u>http://www.intel.com/performance</u>.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Statements in this document that refer to Intel's plans and expectations for the quarter, the year, and the future, are forward-looking statements that involve a number of risks and uncertainties. A detailed discussion of the factors that could affect Intel's results and plans is included in Intel's SEC filings, including the annual report on Form 10-K.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate.

Intel, the Intel logo and others are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

