Technical Specifications for Base Station Radio Frequency Equipment of Third Generation Mobile Telecommunication

National Communications Commission (NCC)

Technical Specifications for Base Station Radio Frequency Equipment of Third Generation Mobile Telecommunication

1. Legal source

The specifications are promulgated pursuant to Item 1, Article 50 of the Telecommunications Act.

2. Scope of application

This specifications apply to the type approval of the radio frequency equipment of base stations, femtocell access points and repeaters, which are WCDMA FDD stated in IMT-2000. The relevant frequency bands are as follows: Band 1 (1920 MHz~1980 MHz/2110 MHz~2170 MHz), Band 3 (1710 MHz~1785 MHz/1805 MHz~1880 MHz), Band 7 (2500 MHz~2570 MHz/2620 MHz~2690 MHz) and Band 8 (885 MHz~915 MHz/930 MHz~960 MHz).

3. Technical standards

The specifications are stipulated in accordance with CNS13438, CNS14336-1, CNS15598-1, 3GPP TS 25.104, TS 25.106, TS 25.141 and other international technical specifications.

- 4. General testing items and eligibility criteria
 - 4.1 Channel spacing: 5 MHz.
 - 4.2 Electromagnetic Compatibility (EMC): Shall comply with CNS13438.
 - 4.3 Electrical safety: Shall comply with CNS13438 or CNS 15598-1.
- 5. Testing items and eligibility criteria for base station radio frequency equipment
 - 5.1 Tests of this section are applicable to base station radio frequency equipment.
 - 5.2 Occupied bandwidth: Shall be less than or equal to 5 MHz.
 - 5.3 Maximum output power: In normal conditions, the maximum output power shall remain within +2dB and -2dB of the rated output power.
 - 5.4 Frequency stability: Shall remain within ±0.05 ppm of the main frequency.
 - 5.5 Spectrum emission mask: Shall comply with the spectrum emission mask shown in figure 1 and the spectrum emission mask limit values prescribed in table 1.
 - 5.6 Spurious emissions: Shall comply with the spurious emissions limit values prescribed in table 2.
 - 5.7 Adjacent Channel Leakage power Ratio (ACLR): If the adjacent channel

2

offset is 5 MHz, the ACLR limit is 45 dB. If the adjacent channel offset is 10 MHz, the ACLR limit is 50 dB.

- 5.8 Transmit intermodulation:
 - 5.8.1 The transmit intermodulation level shall not exceed the spurious emissions limit values prescribed in table2.
 - 5.8.2 Testing methods: Inject modulated interference signal into the antenna connector at a power level of 30 dB lower than main signal. The interference frequency shall be offset ±5MHz, ±10MHz and ±15MHz from the main signal. The interference frequency that are outside of any downlink application band are excluded.
- 6. Testing items and eligibility criteria for femtocell access point radio frequency equipment
 - 6.1 Tests of this section are applicable to femtocell access points radio frequency equipment.
 - 6.2 Occupied bandwidth: Shall be less than or equal to 5 MHz.
 - 6.3 Maximum output power: In normal conditions, the rated output power limit is 20 dBm, and the maximum output power shall remain within +2.7dB and -2.7dB of the rated output power.
 - 6.4 Frequency stability: Shall remain within ±0.25 ppm of the main frequency.
 - 6.5 Spectrum emission mask: Shall comply with the spectrum emission mask shown in figure 1, the spectrum emission mask limit values prescribed in table 1 and the extra spectrum emission mask limit values prescribed in table 3.
 - 6.6 Spurious emissions: Shall comply with the spurious emissions limit values prescribed in table 2.
 - 6.7 Adjacent Channel Leakage power Ratio (ACLR):
 - 6.7.1 Adjacent channel leakage power shall comply with 6.7.2 or 6.7.3, whichever is the higher.
 - 6.7.2 ACLR limit: If the adjacent channel offset is 5 MHz, the ACLR limit is 45 dB. If the adjacent channel offset is 10 MHz, the ACLR limit is 50 dB.
 - 6.7.3 Adjacent channel leakage power limit: the RRC filtered mean power centred on an adjacent channel frequency shall be less than or equal to -44.2dBm/3.84MHz.
 - 6.8 Transmit intermodulation:
 - 6.8.1 The transmit intermodulation level shall not exceed the spurious emissions limit values prescribed in table2.

- 6.8.2 Testing methods: Inject modulated interference signal into the antenna connector at a power level of 30 dB lower than main signal. The interference frequency shall be offset ±5MHz, ±10MHz and ±15MHz from the main signal. The interference frequency that are outside of any downlink application band are excluded.
- 6.9 Output power for adjacent channel protection: According to the setting of table 4, shall comply with the limit values prescribed in table 5. The output power shall remain within±2.7 dB of the limit values in table 5.
- 7. Testing items and eligibility criteria for repeater radio frequency equipment
 - 7.1 Tests of this section are applicable to repeater radio frequency equipment.
 - 7.2 Maximum output power: In normal conditions, if the rated output power is more than or equal to 31dBm, the maximum output power shall remain within +2dB and -2dB of the rated output power. If the rated output power is less than 31dBm, the maximum output power shall remain within +3dB and -3dB of the rated output power.
 - 7.3 Frequency stability: Shall remain within ±0.01 ppm of the main frequency.
 - 7.4 Spectrum emission mask: Shall comply with the spectrum emission mask shown in figure 1 and the spectrum emission mask limit values prescribed in table 1.
 - 7.5 Spurious emissions: Shall comply with the spurious emissions limit values prescribed in table 6.
 - 7.6 Input intermodulation: The input intermodulation limit values are prescribed in table 7, and the input intermodulation requirement for interfering signals in other systems are in table 8.
 - 7.7 Out of band gain: Shall comply with limit values of out of band gain prescribed in table 9.
- 8. Test Requirement

Except as otherwise provided in these technical specifications, testing methods for testing items shall be processed based on the inspection requirements stated in Point 5 of the Low-power Radio-frequency Devices Technical Specifications (LPRFD Technical Requirements). The inspection procedures shall be processed in accordance of the Appendix 1 "Referential Procedures of Inspecting Transmitters" of the Low-power Radio-frequency Devices Technical Specifications.

IS2038

Date: August 14, 2018

Maximum Output Power, P	Frequency offset of measurement filter-3dB point, Δf	Frequency offset of measurement filter centre frequency, f_offset	Maximum level	Measurement bandwidth
	$2.5 \leq \Delta f < 2.7 \text{ MHz}$	$2.515 \text{ MHz} \leq f_{\text{offset}} < 2.715 \text{ MHz}$	-14 dBm	30 kHz
$P \ge 43$	$2.7 \leq \Delta f < 3.5 \text{ MHz}$	$2.715 \text{ MHz} \leq f_{\text{offset}} < 3.515 \text{ MHz}$	- 14-15· (f_offset-2.715) dBm	30 kHz
dBm		$3.515 \text{ MHz} \leq f_\text{offset} < 4.0 \text{ MHz}$	-26 dBm	30 kHz
	$3.5 \leq \Delta f \leq \Delta f_{max} MHz$	$4.0 \text{ MHz} \leq f_offset < f_offset_{max}$	-13 dBm	1 MHz
	$2.5 \leq \Delta f < 2.7 \text{ MHz}$	$2.515 \text{ MHz} \leq f_\text{offset} < 2.715 \text{ MHz}$	-14 dBm	30 kHz
20 - D -	$2.7 \leq \Delta f < 3.5 \text{ MHz}$	$2.715 \text{ MHz} \leq f_{\text{offset}} < 3.515 \text{ MHz}$	- 14-15· (f_offset-2.715) dBm	30 kHz
$39 \ge P \le$		$3.515 \text{ MHz} \leq \text{f_offset} < 4.0 \text{ MHz}$	-26 dBm	30 kHz
43 dBm	$3.5 \leq \Delta f < 7.5 \text{ MHz}$	$4.0 \text{ MHz} \leq f_\text{offset} < 8.0 \text{ MHz}$	-13 dBm	1 MHz
	$7.5 \leq \Delta f \leq \Delta f_{max} MHz$	$8.0 MHz \leq f_offset < f_offset_{max}$	P - 56 dBm	1 MHz
	$2.5 \leq \Delta f < 2.7 \text{ MHz}$	$2.515 \text{ MHz} \leq f_{\text{offset}} < 2.715 \text{ MHz}$	P - 53 dBm	30 kHz
21 < D <	$2.7 \leq \Delta f < 3.5 \text{ MHz}$	$2.715 \text{ MHz} \leq f_{\text{offset}} < 3.515 \text{ MHz}$	P - 53-15· (f_offset- 2.715) dBm	30 kHz
$31 \ge P \le$		$3.515 \text{ MHz} \leq \text{f_offset} < 4.0 \text{ MHz}$	P - 65 dBm	30 kHz
37 abiii	$3.5 \leq \Delta f < 7.5 \text{ MHz}$	$4.0 \text{ MHz} \leq f_\text{offset} < 8.0 \text{ MHz}$	P - 52 dBm	1 MHz
	$7.5 \leq \Delta f \leq \Delta f_{max} MHz$	$8.0MHz \leq f_offset < f_offset_{max}$	P - 56 dBm	1 MHz
	$2.5 \leq \Delta f < 2.7 \text{ MHz}$	$2.515 \text{ MHz} \leq f_{\text{offset}} < 2.715 \text{ MHz}$	-22 dBm	30 kHz
P < 31 dBm	$2.7 \leq \Delta f < 3.5 \text{ MHz}$	$2.715 \text{ MHz} \leq f_{\text{offset}} < 3.515 \text{ MHz}$	-22 -15 (f_{offset} - 2.715) dBm	30 kHz
		$3.515 \text{ MHz} \leq f_{offset} < 4.0 \text{ MHz}$	-34 dBm	30 kHz
	$3.5 \leq \Delta f < 7.5 \text{ MHz}$	$4.0 \text{ MHz} \leq f_{offset} < 8.0 \text{ MHz}$	-21 dBm	1 MHz
	$7.5 \leq \Delta f \leq \Delta f_{max} MHz$	$8.0 MHz \leq f_offset < f_offset_{max}$	-25 dBm	1 MHz

Table 1 : Limit Values of Spectrum Emission Mask

Table 2 : Spurious Emissions Limit Values of Base station and Femtocell Access Point Radio
Frequency Equipment

Category		Band	Maximum level	Measurement bandwidth
		9kHz – 150kHz		1 kHz
Catal		150kHz – 30MHz	12.10	10 kHz
Categor	уА	30MHz – 1GHz	-13 dBm	100 kHz
		1GHz – 12.75 GHz		1 MHz
		$9 \text{kHz} \leftrightarrow 150 \text{kHz}$	- 36 dBm	1 kHz
	Band 1	$150 \text{kHz} \leftrightarrow 30 \text{MHz}$	- 36 dBm	10 kHz
		$30MHz \leftrightarrow 1GHz$	-36 dBm	100 kHz
	Band 3	$1 \text{GHz} \leftrightarrow F_{\text{low}} - 10 \text{MHz}$	-30 dBm	1 MHz
	Band /	F_{low} -10MHz \leftrightarrow F_{high} +10MHz	-15 dBm	1 MHz
Category B		F_{high} +10MHz \leftrightarrow 12.75GHz	-30 dBm	1 MHz
Category D	Band 8	9 kHz \leftrightarrow 150kHz	-36 dBm	1 kHz
		$150 \text{kHz} \leftrightarrow 30 \text{MHz}$	-36 dBm	10 kHz
		$30MHz \leftrightarrow F_{low}-10MHz$	-36 dBm	100 kHz
		F_{low} -10MHz \leftrightarrow F_{high} +10MHz	-16 dBm	100 kHz
		F_{high} +10MHz \leftrightarrow 1GHz	-36 dBm	100 kHz
		1GHz ↔12.75GHz	-30 dBm	1 MHz

Note: F_{low} is the lowest downlink frequency of the operating band ; F_{high} is the highest downlink frequency of operating band.

IS2038 Date: August 14, 2018

Table 3 : Extra Spurious Emissions Limit Values of Femtocell Access Point Radio Frequency Equipment

Maximum Output Power, P	Frequency offset of measurement filter-3dB point, Δf	Frequency offset of measurement filter centre frequency, f_offset	Maximum level	Measurement bandwidth	
$6 \leq P \leq 20 \text{ dBm}$	$12.5 \leq \Delta f \leq \Delta f max MHz$	$13 MHz \leq f_offset < f_offset_{max}$	P-56 dBm	1 MHz	
P<6 dBm	$12.5 \leq \Delta f \leq \Delta fmax MHz$	$13MHz \le f_offset < f_offset_{max}$	-50 dBm	1 MHz	

 Table 4 : Test Parameters for Output Power for Adjacent Channel Protection of Femtocell Access Point

 Radio Frequency Equipment

Testing Environment	CPICH Êc (dBm)	Ioh (dBm)		
1	-80	-50		
2	-90	-60		
3	-100	-70		
4	-100	-50		

 Table 5 : Limit Values for Output Power for Adjacent Channel Protection of Femtocell Access Point

 Radio Frequency Equipment

Input Conditions	Output Power
Ioh > CPICH Êc +43dB and CPICH Êc ≧-105dBm	\leq +10dBm
Ioh \leq CPICH Êc+43dB and CPICH Êc \geq -105dBm	$\leq \max (8 \text{ dBm}, \min (20 \text{dBm}, \text{CPICH} \hat{\text{E}} c+100 \text{dB}))$

Note : CPICH $\hat{E}c$: the code power of adjacent channel's common pilot channel

Ioh : received power density including the signal and interferences; however, the signal of the object to be measured is excluded

Table 6 : Spurious Emissions Limit Values of Repeater Radio Frequency Equipment

Category	Band	Maximum level	Measurement bandwidth
	9kHz – 150kHz		1 kHz
	150kHz – 30MHz	10 10	10 kHz
Category A	30 MHz - 1 GHz	-13 dBm	100 kHz
	1GHz – 12.75 GHz		1 MHz
	9kHz – 150kHz	-36 dBm	1 kHz
Catagory P	150kHz – 30MHz	-36 dBm	10 kHz
Calegoly D	30MHz – 1GHz	-36 dBm	100 kHz
	1GHz – 12.75 GHz	-30 dBm	1 MHz

Table 7 : Inpu	t Intermodulation	Limit Values	of Repeater	Radio Fre	eauencv E	auipment
i aoite / i inipu			or nepeater	100010110		quipinente

f_offset	Interfering signal levels	Type of signals	Measurement bandwidth
3.5 MHz	-40 dBm	2 CW carriers	1 MHz

Note: f_offset is the distance between the centre frequency of first or last channel in the pass band and the interfering signals.

Table 8 : Input IntermodulationRequirementforInterfering Signals in Other Systems ofRepeater Radio Frequency Equipment

Co-located other	Frequency of	ting signals levels Type of signal		Measurement	
systems	interfering signals			bandwidth	
GSM900	921 - 960 MHz	16 dBm	2 CW carriers	1 MHz	
DCS1800	1805 - 1880 MHz	16 dBm	2 CW carriers	1 MHz	
UTRA-FDD or E-	2110 2170 MIL	16 dDm	2 CW comions		
UTRA FDD	2110 - 2170 MHZ	10 dBm	2 C w carriers	1 MHZ	
UTRA-FDD or E-	1005 1000 MIL	16 dBm	2 CW carriers	1 MHz	
UTRA FDD	1803 - 1880 MHZ				
UTRA-FDD or E-	2620 2600 MIL	16 dDm	2 CW comions		
UTRA FDD	2020 - 2090 MHZ	10 dBm	2 C w carriers	ΙΙνιπΖ	
UTRA-FDD or E-	025 060 MIL	16 dDm	2 CW comions		
UTRA FDD	923 - 900 MHZ	10 dBm	2 C w carriers	IIVIHZ	
E-UTRA	758 - 803 MHz	16 dBm	2 CW carriers	1 MHz	

Table 9 : Out of band gain limit values of Repeater Radio Frequency Equipment

foffact	Out of band gain	
I_OIISet	limit value	
$2.7 \leq f_{offset} < 3.5 \text{ MHz}$	60 dB	
$3.5 \leq f_{offset} < 7.5 \text{ MHz}$	45 dB	
$7.5 \leq f_{offset} < 12.5 \text{ MHz}$	45 dB	
$12.5 \text{ MHz} \leq f_{\text{offset}}$	35 dB	

Note: f_offset is the distance between the centre frequency of first or last channel in the pass band and the interfering signals.

IS2038 Date: August 14, 2018

Figure 1 : Spectrum Emission Mask